Added model training artifact dashboard and saving artifacts
Browse files- index.html +281 -12
- tasks/image_classification/train_energy.py +31 -2
- verify_dashboard.py +77 -0
index.html
CHANGED
|
@@ -1,27 +1,296 @@
|
|
| 1 |
<!DOCTYPE html>
|
| 2 |
-
<html>
|
| 3 |
<head>
|
| 4 |
-
<
|
|
|
|
|
|
|
| 5 |
<style>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
body {
|
| 7 |
-
font-family:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
text-align: center;
|
| 9 |
-
|
| 10 |
}
|
|
|
|
| 11 |
h1 {
|
| 12 |
-
color:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
}
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
color: #666;
|
| 16 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
</style>
|
| 18 |
</head>
|
| 19 |
<body>
|
| 20 |
-
<
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
</body>
|
| 27 |
</html>
|
|
|
|
| 1 |
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
<head>
|
| 4 |
+
<meta charset="UTF-8" />
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
| 6 |
+
<title>CTM Training Dashboard</title>
|
| 7 |
<style>
|
| 8 |
+
:root {
|
| 9 |
+
--bg-color: #f4f4f9;
|
| 10 |
+
--card-bg: #ffffff;
|
| 11 |
+
--text-color: #333;
|
| 12 |
+
--accent-color: #4a90e2;
|
| 13 |
+
--success-color: #2ecc71;
|
| 14 |
+
--font-family: "Segoe UI", Tahoma, Geneva, Verdana, sans-serif;
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
body {
|
| 18 |
+
font-family: var(--font-family);
|
| 19 |
+
background-color: var(--bg-color);
|
| 20 |
+
color: var(--text-color);
|
| 21 |
+
margin: 0;
|
| 22 |
+
padding: 20px;
|
| 23 |
+
line-height: 1.6;
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
.container {
|
| 27 |
+
max-width: 1200px;
|
| 28 |
+
margin: 0 auto;
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
header {
|
| 32 |
text-align: center;
|
| 33 |
+
margin-bottom: 40px;
|
| 34 |
}
|
| 35 |
+
|
| 36 |
h1 {
|
| 37 |
+
color: var(--accent-color);
|
| 38 |
+
margin-bottom: 10px;
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
.status-card {
|
| 42 |
+
background: var(--card-bg);
|
| 43 |
+
padding: 20px;
|
| 44 |
+
border-radius: 8px;
|
| 45 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
| 46 |
+
margin-bottom: 30px;
|
| 47 |
+
display: grid;
|
| 48 |
+
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
| 49 |
+
gap: 20px;
|
| 50 |
+
text-align: center;
|
| 51 |
}
|
| 52 |
+
|
| 53 |
+
.metric {
|
| 54 |
+
display: flex;
|
| 55 |
+
flex-direction: column;
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
.metric-label {
|
| 59 |
+
font-size: 0.9em;
|
| 60 |
color: #666;
|
| 61 |
}
|
| 62 |
+
|
| 63 |
+
.metric-value {
|
| 64 |
+
font-size: 1.5em;
|
| 65 |
+
font-weight: bold;
|
| 66 |
+
color: var(--text-color);
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
.plots-grid {
|
| 70 |
+
display: grid;
|
| 71 |
+
grid-template-columns: repeat(auto-fit, minmax(500px, 1fr));
|
| 72 |
+
gap: 20px;
|
| 73 |
+
margin-bottom: 30px;
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
.plot-card {
|
| 77 |
+
background: var(--card-bg);
|
| 78 |
+
padding: 15px;
|
| 79 |
+
border-radius: 8px;
|
| 80 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
.plot-card img {
|
| 84 |
+
width: 100%;
|
| 85 |
+
height: auto;
|
| 86 |
+
border-radius: 4px;
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
.artifacts-section {
|
| 90 |
+
background: var(--card-bg);
|
| 91 |
+
padding: 20px;
|
| 92 |
+
border-radius: 8px;
|
| 93 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
| 94 |
+
text-align: center;
|
| 95 |
+
margin-bottom: 30px;
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
.btn {
|
| 99 |
+
display: inline-block;
|
| 100 |
+
padding: 10px 20px;
|
| 101 |
+
background-color: var(--accent-color);
|
| 102 |
+
color: white;
|
| 103 |
+
text-decoration: none;
|
| 104 |
+
border-radius: 5px;
|
| 105 |
+
margin: 0 10px;
|
| 106 |
+
transition: background-color 0.3s;
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
.btn:hover {
|
| 110 |
+
background-color: #357abd;
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
+
.gallery {
|
| 114 |
+
display: grid;
|
| 115 |
+
grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
|
| 116 |
+
gap: 15px;
|
| 117 |
+
margin-top: 20px;
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
.gallery img {
|
| 121 |
+
width: 100%;
|
| 122 |
+
border-radius: 4px;
|
| 123 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
footer {
|
| 127 |
+
text-align: center;
|
| 128 |
+
margin-top: 50px;
|
| 129 |
+
color: #888;
|
| 130 |
+
font-size: 0.9em;
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
#last-updated {
|
| 134 |
+
font-size: 0.8em;
|
| 135 |
+
color: #999;
|
| 136 |
+
margin-top: 5px;
|
| 137 |
+
}
|
| 138 |
</style>
|
| 139 |
</head>
|
| 140 |
<body>
|
| 141 |
+
<div class="container">
|
| 142 |
+
<header>
|
| 143 |
+
<h1>CTM Training Dashboard</h1>
|
| 144 |
+
<p>Real-time monitoring of Energy-Based Halting Experiment</p>
|
| 145 |
+
<div id="last-updated">Waiting for data...</div>
|
| 146 |
+
</header>
|
| 147 |
+
|
| 148 |
+
<div class="status-card" id="metrics-container">
|
| 149 |
+
<div class="metric">
|
| 150 |
+
<span class="metric-label">Iteration</span>
|
| 151 |
+
<span class="metric-value" id="iter">--</span>
|
| 152 |
+
</div>
|
| 153 |
+
<div class="metric">
|
| 154 |
+
<span class="metric-label">Epoch</span>
|
| 155 |
+
<span class="metric-value" id="epoch">--</span>
|
| 156 |
+
</div>
|
| 157 |
+
<div class="metric">
|
| 158 |
+
<span class="metric-label">Train Loss</span>
|
| 159 |
+
<span class="metric-value" id="train-loss">--</span>
|
| 160 |
+
</div>
|
| 161 |
+
<div class="metric">
|
| 162 |
+
<span class="metric-label">Test Loss</span>
|
| 163 |
+
<span class="metric-value" id="test-loss">--</span>
|
| 164 |
+
</div>
|
| 165 |
+
<div class="metric">
|
| 166 |
+
<span class="metric-label">Train Acc</span>
|
| 167 |
+
<span class="metric-value" id="train-acc">--</span>
|
| 168 |
+
</div>
|
| 169 |
+
<div class="metric">
|
| 170 |
+
<span class="metric-label">Test Acc</span>
|
| 171 |
+
<span class="metric-value" id="test-acc">--</span>
|
| 172 |
+
</div>
|
| 173 |
+
</div>
|
| 174 |
+
|
| 175 |
+
<div class="plots-grid">
|
| 176 |
+
<div class="plot-card">
|
| 177 |
+
<h3>Loss History</h3>
|
| 178 |
+
<img
|
| 179 |
+
id="loss-plot"
|
| 180 |
+
src="logs/scratch/losses.png"
|
| 181 |
+
alt="Loss Plot"
|
| 182 |
+
onerror="this.src='https://via.placeholder.com/600x400?text=Waiting+for+Plots'"
|
| 183 |
+
/>
|
| 184 |
+
</div>
|
| 185 |
+
<div class="plot-card">
|
| 186 |
+
<h3>Accuracy History</h3>
|
| 187 |
+
<img
|
| 188 |
+
id="acc-plot"
|
| 189 |
+
src="logs/scratch/accuracies.png"
|
| 190 |
+
alt="Accuracy Plot"
|
| 191 |
+
onerror="this.src='https://via.placeholder.com/600x400?text=Waiting+for+Plots'"
|
| 192 |
+
/>
|
| 193 |
+
</div>
|
| 194 |
+
</div>
|
| 195 |
+
|
| 196 |
+
<div class="artifacts-section">
|
| 197 |
+
<h2>Artifacts & Downloads</h2>
|
| 198 |
+
<p>Download the latest model checkpoints and full logs.</p>
|
| 199 |
+
<a href="logs/scratch/artifacts.zip" class="btn"
|
| 200 |
+
>Download All Artifacts (.zip)</a
|
| 201 |
+
>
|
| 202 |
+
<a href="logs/scratch/checkpoint.pt" class="btn"
|
| 203 |
+
>Download Checkpoint (.pt)</a
|
| 204 |
+
>
|
| 205 |
+
</div>
|
| 206 |
+
|
| 207 |
+
<div class="artifacts-section">
|
| 208 |
+
<h2>Attention Visualization</h2>
|
| 209 |
+
<p>Latest generated attention maps from the model.</p>
|
| 210 |
+
<div class="gallery" id="gif-gallery">
|
| 211 |
+
<!-- GIFs will be injected here -->
|
| 212 |
+
<img
|
| 213 |
+
src="logs/scratch/0_attention.gif"
|
| 214 |
+
onerror="this.style.display='none'"
|
| 215 |
+
alt="Attention Map"
|
| 216 |
+
/>
|
| 217 |
+
</div>
|
| 218 |
+
</div>
|
| 219 |
+
</div>
|
| 220 |
+
|
| 221 |
+
<footer>
|
| 222 |
+
<p>Continuous Thought Machine Experiment</p>
|
| 223 |
+
</footer>
|
| 224 |
+
|
| 225 |
+
<script>
|
| 226 |
+
const LOG_DIR = "logs/scratch";
|
| 227 |
+
|
| 228 |
+
async function updateDashboard() {
|
| 229 |
+
try {
|
| 230 |
+
// Fetch status.json
|
| 231 |
+
const response = await fetch(
|
| 232 |
+
`${LOG_DIR}/status.json?t=${new Date().getTime()}`
|
| 233 |
+
);
|
| 234 |
+
if (!response.ok) throw new Error("Status file not found");
|
| 235 |
+
|
| 236 |
+
const data = await response.json();
|
| 237 |
+
|
| 238 |
+
// Update Metrics
|
| 239 |
+
document.getElementById(
|
| 240 |
+
"iter"
|
| 241 |
+
).textContent = `${data.iteration} / ${data.total_iterations}`;
|
| 242 |
+
document.getElementById("epoch").textContent = data.epoch;
|
| 243 |
+
document.getElementById("train-loss").textContent = parseFloat(
|
| 244 |
+
data.train_loss
|
| 245 |
+
).toFixed(4);
|
| 246 |
+
document.getElementById("test-loss").textContent = parseFloat(
|
| 247 |
+
data.test_loss
|
| 248 |
+
).toFixed(4);
|
| 249 |
+
|
| 250 |
+
// Handle Accuracy (could be array or float)
|
| 251 |
+
const formatAcc = (acc) => {
|
| 252 |
+
if (Array.isArray(acc)) {
|
| 253 |
+
return (acc[acc.length - 1] * 100).toFixed(2) + "%";
|
| 254 |
+
}
|
| 255 |
+
return (acc * 100).toFixed(2) + "%";
|
| 256 |
+
};
|
| 257 |
+
|
| 258 |
+
document.getElementById("train-acc").textContent = formatAcc(
|
| 259 |
+
data.train_accuracy
|
| 260 |
+
);
|
| 261 |
+
document.getElementById("test-acc").textContent = formatAcc(
|
| 262 |
+
data.test_accuracy
|
| 263 |
+
);
|
| 264 |
+
|
| 265 |
+
// Update Timestamp
|
| 266 |
+
document.getElementById(
|
| 267 |
+
"last-updated"
|
| 268 |
+
).textContent = `Last updated: ${new Date().toLocaleTimeString()}`;
|
| 269 |
+
|
| 270 |
+
// Refresh Images
|
| 271 |
+
const timestamp = new Date().getTime();
|
| 272 |
+
document.getElementById(
|
| 273 |
+
"loss-plot"
|
| 274 |
+
).src = `${LOG_DIR}/losses.png?t=${timestamp}`;
|
| 275 |
+
document.getElementById(
|
| 276 |
+
"acc-plot"
|
| 277 |
+
).src = `${LOG_DIR}/accuracies.png?t=${timestamp}`;
|
| 278 |
+
|
| 279 |
+
// Refresh Gallery (simple approach: try to reload the known gif)
|
| 280 |
+
const gallery = document.getElementById("gif-gallery");
|
| 281 |
+
gallery.innerHTML = `<img src="${LOG_DIR}/0_attention.gif?t=${timestamp}" onerror="this.style.display='none'" alt="Attention Map">`;
|
| 282 |
+
} catch (error) {
|
| 283 |
+
console.log("Waiting for training to start...", error);
|
| 284 |
+
document.getElementById("last-updated").textContent =
|
| 285 |
+
"Waiting for training to start...";
|
| 286 |
+
}
|
| 287 |
+
}
|
| 288 |
+
|
| 289 |
+
// Update every 30 seconds
|
| 290 |
+
setInterval(updateDashboard, 30000);
|
| 291 |
+
|
| 292 |
+
// Initial call
|
| 293 |
+
updateDashboard();
|
| 294 |
+
</script>
|
| 295 |
</body>
|
| 296 |
</html>
|
tasks/image_classification/train_energy.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
import argparse
|
| 2 |
import os
|
| 3 |
import random
|
|
|
|
|
|
|
| 4 |
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import numpy as np
|
|
@@ -292,7 +294,7 @@ if __name__=='__main__':
|
|
| 292 |
elif args.model == 'ff':
|
| 293 |
model = FFBaseline(
|
| 294 |
d_model=args.d_model,
|
| 295 |
-
|
| 296 |
out_dims=args.out_dims,
|
| 297 |
dropout=args.dropout,
|
| 298 |
)
|
|
@@ -718,6 +720,27 @@ if __name__=='__main__':
|
|
| 718 |
|
| 719 |
|
| 720 |
# Save model checkpoint (conditional metrics)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 721 |
# Save model checkpoint (conditional metrics)
|
| 722 |
if (bi % args.save_every == 0 or bi == args.training_iterations - 1) and bi != start_iter:
|
| 723 |
if accelerator.is_main_process:
|
|
@@ -744,6 +767,12 @@ if __name__=='__main__':
|
|
| 744 |
|
| 745 |
accelerator.save(checkpoint_data, f'{args.log_dir}/checkpoint.pt')
|
| 746 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 747 |
# Push to Hub
|
| 748 |
if args.push_to_hub and args.hub_model_id:
|
| 749 |
if bi % (args.save_every * 5) == 0: # Upload less frequently
|
|
@@ -753,7 +782,7 @@ if __name__=='__main__':
|
|
| 753 |
repo_id=args.hub_model_id,
|
| 754 |
token=args.hub_token,
|
| 755 |
commit_message=f"Training checkpoint {bi}",
|
| 756 |
-
ignore_patterns=[
|
| 757 |
)
|
| 758 |
except Exception as e:
|
| 759 |
print(f"Failed to upload to hub: {e}")
|
|
|
|
| 1 |
import argparse
|
| 2 |
import os
|
| 3 |
import random
|
| 4 |
+
import json
|
| 5 |
+
import shutil
|
| 6 |
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
import numpy as np
|
|
|
|
| 294 |
elif args.model == 'ff':
|
| 295 |
model = FFBaseline(
|
| 296 |
d_model=args.d_model,
|
| 297 |
+
backbone_type=args.backbone_type,
|
| 298 |
out_dims=args.out_dims,
|
| 299 |
dropout=args.dropout,
|
| 300 |
)
|
|
|
|
| 720 |
|
| 721 |
|
| 722 |
# Save model checkpoint (conditional metrics)
|
| 723 |
+
# Save status.json for the dashboard
|
| 724 |
+
if (bi % args.track_every == 0 or bi == args.training_iterations - 1) and bi != start_iter:
|
| 725 |
+
status_data = {
|
| 726 |
+
'iteration': bi,
|
| 727 |
+
'total_iterations': args.training_iterations,
|
| 728 |
+
'epoch': bi // len(trainloader),
|
| 729 |
+
'train_loss': train_losses[-1] if train_losses else 0.0,
|
| 730 |
+
'test_loss': test_losses[-1] if test_losses else 0.0,
|
| 731 |
+
'train_accuracy': train_accuracies[-1] if train_accuracies else 0.0, # Might be array for CTM
|
| 732 |
+
'test_accuracy': test_accuracies[-1] if test_accuracies else 0.0, # Might be array for CTM
|
| 733 |
+
'learning_rate': current_lr,
|
| 734 |
+
}
|
| 735 |
+
# Handle numpy arrays for JSON serialization
|
| 736 |
+
def convert_to_serializable(obj):
|
| 737 |
+
if isinstance(obj, np.ndarray):
|
| 738 |
+
return obj.tolist()
|
| 739 |
+
return obj
|
| 740 |
+
|
| 741 |
+
with open(f'{args.log_dir}/status.json', 'w') as f:
|
| 742 |
+
json.dump(status_data, f, default=convert_to_serializable)
|
| 743 |
+
|
| 744 |
# Save model checkpoint (conditional metrics)
|
| 745 |
if (bi % args.save_every == 0 or bi == args.training_iterations - 1) and bi != start_iter:
|
| 746 |
if accelerator.is_main_process:
|
|
|
|
| 767 |
|
| 768 |
accelerator.save(checkpoint_data, f'{args.log_dir}/checkpoint.pt')
|
| 769 |
|
| 770 |
+
# Zip artifacts
|
| 771 |
+
try:
|
| 772 |
+
shutil.make_archive(f'{args.log_dir}/artifacts', 'zip', args.log_dir)
|
| 773 |
+
except Exception as e:
|
| 774 |
+
print(f"Failed to zip artifacts: {e}")
|
| 775 |
+
|
| 776 |
# Push to Hub
|
| 777 |
if args.push_to_hub and args.hub_model_id:
|
| 778 |
if bi % (args.save_every * 5) == 0: # Upload less frequently
|
|
|
|
| 782 |
repo_id=args.hub_model_id,
|
| 783 |
token=args.hub_token,
|
| 784 |
commit_message=f"Training checkpoint {bi}",
|
| 785 |
+
ignore_patterns=[], # Upload everything including .pt and .zip
|
| 786 |
)
|
| 787 |
except Exception as e:
|
| 788 |
print(f"Failed to upload to hub: {e}")
|
verify_dashboard.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import subprocess
|
| 4 |
+
import time
|
| 5 |
+
import shutil
|
| 6 |
+
|
| 7 |
+
def verify():
|
| 8 |
+
print("Starting verification...")
|
| 9 |
+
|
| 10 |
+
# Clean up previous logs
|
| 11 |
+
if os.path.exists('logs/scratch'):
|
| 12 |
+
shutil.rmtree('logs/scratch')
|
| 13 |
+
|
| 14 |
+
# Run training script for a few iterations
|
| 15 |
+
# We use a small model (ff) and cifar10 for speed, with minimal iterations
|
| 16 |
+
cmd = [
|
| 17 |
+
"pixi", "run", "accelerate", "launch", "--cpu", "tasks/image_classification/train_energy.py",
|
| 18 |
+
"--model", "ff",
|
| 19 |
+
"--dataset", "cifar10",
|
| 20 |
+
"--batch_size", "4",
|
| 21 |
+
"--training_iterations", "5", # Run for 5 iterations
|
| 22 |
+
"--track_every", "2", # Track every 2 iterations to ensure we get logs
|
| 23 |
+
"--save_every", "2", # Save every 2 iterations
|
| 24 |
+
"--log_dir", "logs/scratch",
|
| 25 |
+
"--device", "-1" # Use CPU for verification to avoid GPU issues if any
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
+
print(f"Running command: {' '.join(cmd)}")
|
| 29 |
+
try:
|
| 30 |
+
subprocess.run(cmd, check=True, capture_output=True)
|
| 31 |
+
except subprocess.CalledProcessError as e:
|
| 32 |
+
print("Training failed!")
|
| 33 |
+
print(e.stderr.decode())
|
| 34 |
+
return
|
| 35 |
+
|
| 36 |
+
print("Training finished. Checking files...")
|
| 37 |
+
|
| 38 |
+
# Check status.json
|
| 39 |
+
if os.path.exists('logs/scratch/status.json'):
|
| 40 |
+
print("[PASS] status.json exists")
|
| 41 |
+
with open('logs/scratch/status.json', 'r') as f:
|
| 42 |
+
data = json.load(f)
|
| 43 |
+
print(f" - Iteration: {data.get('iteration')}")
|
| 44 |
+
print(f" - Train Loss: {data.get('train_loss')}")
|
| 45 |
+
else:
|
| 46 |
+
print("[FAIL] status.json missing")
|
| 47 |
+
|
| 48 |
+
# Check artifacts.zip
|
| 49 |
+
if os.path.exists('logs/scratch/artifacts.zip'):
|
| 50 |
+
print("[PASS] artifacts.zip exists")
|
| 51 |
+
else:
|
| 52 |
+
print("[FAIL] artifacts.zip missing")
|
| 53 |
+
|
| 54 |
+
# Check plots
|
| 55 |
+
if os.path.exists('logs/scratch/losses.png'):
|
| 56 |
+
print("[PASS] losses.png exists")
|
| 57 |
+
else:
|
| 58 |
+
print("[FAIL] losses.png missing")
|
| 59 |
+
|
| 60 |
+
if os.path.exists('logs/scratch/accuracies.png'):
|
| 61 |
+
print("[PASS] accuracies.png exists")
|
| 62 |
+
else:
|
| 63 |
+
print("[FAIL] accuracies.png missing")
|
| 64 |
+
|
| 65 |
+
# Check index.html content (simple check)
|
| 66 |
+
if os.path.exists('index.html'):
|
| 67 |
+
with open('index.html', 'r') as f:
|
| 68 |
+
content = f.read()
|
| 69 |
+
if 'CTM Training Dashboard' in content and 'status.json' in content:
|
| 70 |
+
print("[PASS] index.html looks correct")
|
| 71 |
+
else:
|
| 72 |
+
print("[FAIL] index.html content incorrect")
|
| 73 |
+
else:
|
| 74 |
+
print("[FAIL] index.html missing")
|
| 75 |
+
|
| 76 |
+
if __name__ == "__main__":
|
| 77 |
+
verify()
|