ciaran-regan-ie commited on
Commit
15ae0ac
·
1 Parent(s): bff52b5

more verbose

Browse files
Files changed (1) hide show
  1. examples/02_inference.ipynb +11 -3
examples/02_inference.ipynb CHANGED
@@ -355,9 +355,9 @@
355
  "- `predictions` (torch.Tensor): logits at each internal tick (Shape: B, C, T)\n",
356
  "- `certainties` (torch.Tensor): 1 - normalized entropy at each internal tick (Shape: B, 2, T)\n",
357
  "- `synchronization` (tuple(np.array)): a tuple containing the synch represenations over time for both actions and outputs (Shape of each: T, B, synch_rep_size)\n",
358
- "- `pre_activations` (np.array): the history of neuron pre-activations (after synapses, before NLMs)\n",
359
- "- `post_activations` (np.array): the history of neuron post-activations (after NLMs)\n",
360
- "- `attention_tracking` (np.array): a tensor containing the attention weights\n"
361
  ]
362
  },
363
  {
@@ -409,6 +409,14 @@
409
  "print(f\"Predicted Class (most certain): {prediction_most_certain.item()} = {IMAGENET_CLASS_LIST[prediction.item()]}\")"
410
  ]
411
  },
 
 
 
 
 
 
 
 
412
  {
413
  "cell_type": "code",
414
  "execution_count": null,
 
355
  "- `predictions` (torch.Tensor): logits at each internal tick (Shape: B, C, T)\n",
356
  "- `certainties` (torch.Tensor): 1 - normalized entropy at each internal tick (Shape: B, 2, T)\n",
357
  "- `synchronization` (tuple(np.array)): a tuple containing the synch represenations over time for both actions and outputs (Shape of each: T, B, synch_rep_size)\n",
358
+ "- `pre_activations` (np.array): the history of neuron pre-activations (after synapses, before NLMs) (Shape: T, B, d_model)\n",
359
+ "- `post_activations` (np.array): the history of neuron post-activations (after NLMs) (Shape: T, B, d_model)\n",
360
+ "- `attention_tracking` (np.array): a tensor containing the attention weights (Shape: T, B, num_heads, target_seq_length=1, source_seq_length=196)\n"
361
  ]
362
  },
363
  {
 
409
  "print(f\"Predicted Class (most certain): {prediction_most_certain.item()} = {IMAGENET_CLASS_LIST[prediction.item()]}\")"
410
  ]
411
  },
412
+ {
413
+ "cell_type": "markdown",
414
+ "id": "fef2a65e",
415
+ "metadata": {},
416
+ "source": [
417
+ "Next, we write a function to make pretty gifs."
418
+ ]
419
+ },
420
  {
421
  "cell_type": "code",
422
  "execution_count": null,