Thought Depth via Energy Minimization: halting with a learned Energy scalar.
Browse files- .gitignore +1 -0
- configs/energy_experiment.yaml +60 -0
- inference_energy.py +107 -0
- models/ctm.py +41 -4
- pixi.lock +10 -11
- pixi.toml +1 -1
- tasks/image_classification/train_energy.py +725 -0
- utils/losses.py +51 -0
.gitignore
CHANGED
|
@@ -26,3 +26,4 @@ utils/hugging_face/
|
|
| 26 |
# pixi environments
|
| 27 |
.pixi/*
|
| 28 |
!.pixi/config.toml
|
|
|
|
|
|
| 26 |
# pixi environments
|
| 27 |
.pixi/*
|
| 28 |
!.pixi/config.toml
|
| 29 |
+
changes.md
|
configs/energy_experiment.yaml
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Energy Halting Experiment Config
|
| 2 |
+
|
| 3 |
+
# Model Architecture
|
| 4 |
+
model: ctm
|
| 5 |
+
d_model: 512
|
| 6 |
+
d_input: 128
|
| 7 |
+
heads: 4
|
| 8 |
+
iterations: 50
|
| 9 |
+
dropout: 0.0
|
| 10 |
+
backbone_type: resnet18-4
|
| 11 |
+
positional_embedding_type: none
|
| 12 |
+
|
| 13 |
+
# CTM Specifics
|
| 14 |
+
synapse_depth: 4
|
| 15 |
+
n_synch_out: 512
|
| 16 |
+
n_synch_action: 512
|
| 17 |
+
neuron_select_type: random-pairing
|
| 18 |
+
n_random_pairing_self: 0
|
| 19 |
+
memory_length: 25
|
| 20 |
+
deep_memory: true
|
| 21 |
+
memory_hidden_dims: 4
|
| 22 |
+
do_normalisation: false
|
| 23 |
+
|
| 24 |
+
# Energy Head
|
| 25 |
+
energy_head:
|
| 26 |
+
enabled: true
|
| 27 |
+
d_hidden: 64
|
| 28 |
+
|
| 29 |
+
# Training
|
| 30 |
+
batch_size: 32
|
| 31 |
+
batch_size_test: 32
|
| 32 |
+
lr: 1.0e-3
|
| 33 |
+
training_iterations: 100001
|
| 34 |
+
warmup_steps: 5000
|
| 35 |
+
use_scheduler: true
|
| 36 |
+
scheduler_type: cosine
|
| 37 |
+
weight_decay: 0.0
|
| 38 |
+
gradient_clipping: -1
|
| 39 |
+
do_compile: false
|
| 40 |
+
num_workers_train: 4
|
| 41 |
+
|
| 42 |
+
# Loss
|
| 43 |
+
loss:
|
| 44 |
+
type: energy_contrastive
|
| 45 |
+
margin: 5.0
|
| 46 |
+
energy_scale: 0.5
|
| 47 |
+
|
| 48 |
+
# Inference
|
| 49 |
+
inference:
|
| 50 |
+
energy_threshold: 0.5
|
| 51 |
+
delta_threshold: 0.01
|
| 52 |
+
|
| 53 |
+
# Housekeeping
|
| 54 |
+
dataset: cifar10
|
| 55 |
+
data_root: data/
|
| 56 |
+
save_every: 1000
|
| 57 |
+
track_every: 1000
|
| 58 |
+
seed: 412
|
| 59 |
+
log_dir: logs/energy_experiment
|
| 60 |
+
device: [-1] # Auto-detect
|
inference_energy.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import yaml
|
| 3 |
+
import argparse
|
| 4 |
+
from models.ctm import ContinuousThoughtMachine
|
| 5 |
+
|
| 6 |
+
class EnergyInference:
|
| 7 |
+
def __init__(self, model_path, config_path, device='cpu'):
|
| 8 |
+
# Load Config
|
| 9 |
+
with open(config_path, 'r') as f:
|
| 10 |
+
self.config = yaml.safe_load(f)
|
| 11 |
+
|
| 12 |
+
self.device = device
|
| 13 |
+
|
| 14 |
+
# Load Model
|
| 15 |
+
# Reconstruct model args from config
|
| 16 |
+
# Note: This assumes config structure matches __init__ args or we map them
|
| 17 |
+
# For simplicity, we'll assume a flat config or specific mapping
|
| 18 |
+
|
| 19 |
+
# Extract model params from config
|
| 20 |
+
model_config = self.config
|
| 21 |
+
|
| 22 |
+
self.model = ContinuousThoughtMachine(
|
| 23 |
+
iterations=model_config['iterations'],
|
| 24 |
+
d_model=model_config['d_model'],
|
| 25 |
+
d_input=model_config['d_input'],
|
| 26 |
+
heads=model_config['heads'],
|
| 27 |
+
n_synch_out=model_config['n_synch_out'],
|
| 28 |
+
n_synch_action=model_config['n_synch_action'],
|
| 29 |
+
synapse_depth=model_config['synapse_depth'],
|
| 30 |
+
memory_length=model_config['memory_length'],
|
| 31 |
+
deep_nlms=model_config['deep_memory'],
|
| 32 |
+
memory_hidden_dims=model_config['memory_hidden_dims'],
|
| 33 |
+
do_layernorm_nlm=model_config['do_normalisation'],
|
| 34 |
+
backbone_type=model_config['backbone_type'],
|
| 35 |
+
positional_embedding_type=model_config['positional_embedding_type'],
|
| 36 |
+
out_dims=model_config['out_dims'],
|
| 37 |
+
prediction_reshaper=model_config.get('prediction_reshaper', [-1]),
|
| 38 |
+
dropout=model_config.get('dropout', 0.0),
|
| 39 |
+
neuron_select_type=model_config.get('neuron_select_type', 'random-pairing'),
|
| 40 |
+
n_random_pairing_self=model_config.get('n_random_pairing_self', 0),
|
| 41 |
+
energy_head_enabled=model_config.get('energy_head', {}).get('enabled', False),
|
| 42 |
+
energy_hidden_dim=model_config.get('energy_head', {}).get('d_hidden', 64)
|
| 43 |
+
).to(self.device)
|
| 44 |
+
|
| 45 |
+
checkpoint = torch.load(model_path, map_location=self.device)
|
| 46 |
+
self.model.load_state_dict(checkpoint['model_state_dict'])
|
| 47 |
+
self.model.eval()
|
| 48 |
+
|
| 49 |
+
def run_adaptive(self, inputs, energy_threshold=1.0, delta_threshold=0.01):
|
| 50 |
+
"""
|
| 51 |
+
Runs the CTM and halts when Energy < threshold OR Energy stabilizes.
|
| 52 |
+
"""
|
| 53 |
+
inputs = inputs.to(self.device)
|
| 54 |
+
batch_size = inputs.shape[0]
|
| 55 |
+
|
| 56 |
+
# We need to run the model step-by-step.
|
| 57 |
+
# However, the current CTM implementation runs the full loop in forward().
|
| 58 |
+
# To support adaptive halting without refactoring the whole model into a cell,
|
| 59 |
+
# we can run the full forward pass and then post-process the energy history
|
| 60 |
+
# to determine when it WOULD have halted.
|
| 61 |
+
# This is less efficient but easier to implement given the current codebase.
|
| 62 |
+
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
# Run full forward pass
|
| 65 |
+
predictions, certainties, energies = self.model(inputs)
|
| 66 |
+
# energies shape: [B, 1, T]
|
| 67 |
+
energies = energies.squeeze(1) # [B, T]
|
| 68 |
+
|
| 69 |
+
final_predictions = torch.zeros(batch_size, dtype=torch.long, device=self.device)
|
| 70 |
+
final_steps = torch.zeros(batch_size, dtype=torch.long, device=self.device)
|
| 71 |
+
|
| 72 |
+
for b in range(batch_size):
|
| 73 |
+
halted = False
|
| 74 |
+
for t in range(self.model.iterations):
|
| 75 |
+
energy = energies[b, t]
|
| 76 |
+
|
| 77 |
+
# 1. Check Absolute Energy Threshold
|
| 78 |
+
is_low_energy = energy < energy_threshold
|
| 79 |
+
|
| 80 |
+
# 2. Check Convergence
|
| 81 |
+
if t > 0:
|
| 82 |
+
prev_energy = energies[b, t-1]
|
| 83 |
+
energy_delta = torch.abs(energy - prev_energy)
|
| 84 |
+
is_converged = energy_delta < delta_threshold
|
| 85 |
+
else:
|
| 86 |
+
is_converged = False
|
| 87 |
+
|
| 88 |
+
if is_low_energy or is_converged:
|
| 89 |
+
final_predictions[b] = predictions[b, :, t].argmax()
|
| 90 |
+
final_steps[b] = t + 1
|
| 91 |
+
halted = True
|
| 92 |
+
break
|
| 93 |
+
|
| 94 |
+
if not halted:
|
| 95 |
+
final_predictions[b] = predictions[b, :, -1].argmax()
|
| 96 |
+
final_steps[b] = self.model.iterations
|
| 97 |
+
|
| 98 |
+
return final_predictions, final_steps
|
| 99 |
+
|
| 100 |
+
if __name__ == "__main__":
|
| 101 |
+
parser = argparse.ArgumentParser()
|
| 102 |
+
parser.add_argument('--model_path', type=str, required=True)
|
| 103 |
+
parser.add_argument('--config_path', type=str, required=True)
|
| 104 |
+
args = parser.parse_args()
|
| 105 |
+
|
| 106 |
+
# Example usage (requires data)
|
| 107 |
+
print("Inference script created. Use EnergyInference class to run adaptive inference.")
|
models/ctm.py
CHANGED
|
@@ -98,6 +98,8 @@ class ContinuousThoughtMachine(nn.Module, PyTorchModelHubMixin):
|
|
| 98 |
dropout_nlm=None,
|
| 99 |
neuron_select_type='random-pairing',
|
| 100 |
n_random_pairing_self=0,
|
|
|
|
|
|
|
| 101 |
):
|
| 102 |
super(ContinuousThoughtMachine, self).__init__()
|
| 103 |
|
|
@@ -115,6 +117,8 @@ class ContinuousThoughtMachine(nn.Module, PyTorchModelHubMixin):
|
|
| 115 |
self.neuron_select_type = neuron_select_type
|
| 116 |
self.memory_length = memory_length
|
| 117 |
dropout_nlm = dropout if dropout_nlm is None else dropout_nlm
|
|
|
|
|
|
|
| 118 |
|
| 119 |
# --- Assertions ---
|
| 120 |
self.verify_args()
|
|
@@ -149,6 +153,14 @@ class ContinuousThoughtMachine(nn.Module, PyTorchModelHubMixin):
|
|
| 149 |
|
| 150 |
# --- Output Procesing ---
|
| 151 |
self.output_projector = nn.Sequential(nn.LazyLinear(self.out_dims))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
@classmethod
|
| 154 |
def _from_pretrained(
|
|
@@ -460,13 +472,23 @@ class ContinuousThoughtMachine(nn.Module, PyTorchModelHubMixin):
|
|
| 460 |
neuron_indices_left = neuron_indices_right = torch.arange(d_model-n_synch, d_model)
|
| 461 |
|
| 462 |
elif self.neuron_select_type=='random':
|
| 463 |
-
neuron_indices_left = torch.
|
| 464 |
-
neuron_indices_right = torch.
|
| 465 |
|
| 466 |
elif self.neuron_select_type=='random-pairing':
|
| 467 |
assert n_synch > n_random_pairing_self, f"Need at least {n_random_pairing_self} pairs for {self.neuron_select_type}"
|
| 468 |
-
neuron_indices_left = torch.
|
| 469 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 470 |
|
| 471 |
device = self.start_activated_state.device
|
| 472 |
return neuron_indices_left.to(device), neuron_indices_right.to(device)
|
|
@@ -533,7 +555,9 @@ class ContinuousThoughtMachine(nn.Module, PyTorchModelHubMixin):
|
|
| 533 |
post_activations_tracking = []
|
| 534 |
synch_out_tracking = []
|
| 535 |
synch_action_tracking = []
|
|
|
|
| 536 |
attention_tracking = []
|
|
|
|
| 537 |
|
| 538 |
# --- Featurise Input Data ---
|
| 539 |
kv = self.compute_features(x)
|
|
@@ -544,7 +568,9 @@ class ContinuousThoughtMachine(nn.Module, PyTorchModelHubMixin):
|
|
| 544 |
|
| 545 |
# --- Prepare Storage for Outputs per Iteration ---
|
| 546 |
predictions = torch.empty(B, self.out_dims, self.iterations, device=device, dtype=torch.float32)
|
|
|
|
| 547 |
certainties = torch.empty(B, 2, self.iterations, device=device, dtype=torch.float32)
|
|
|
|
| 548 |
|
| 549 |
# --- Initialise Recurrent Synch Values ---
|
| 550 |
decay_alpha_action, decay_beta_action = None, None
|
|
@@ -586,8 +612,13 @@ class ContinuousThoughtMachine(nn.Module, PyTorchModelHubMixin):
|
|
| 586 |
current_prediction = self.output_projector(synchronisation_out)
|
| 587 |
current_certainty = self.compute_certainty(current_prediction)
|
| 588 |
|
|
|
|
| 589 |
predictions[..., stepi] = current_prediction
|
| 590 |
certainties[..., stepi] = current_certainty
|
|
|
|
|
|
|
|
|
|
|
|
|
| 591 |
|
| 592 |
# --- Tracking ---
|
| 593 |
if track:
|
|
@@ -600,5 +631,11 @@ class ContinuousThoughtMachine(nn.Module, PyTorchModelHubMixin):
|
|
| 600 |
# --- Return Values ---
|
| 601 |
if track:
|
| 602 |
return predictions, certainties, (np.array(synch_out_tracking), np.array(synch_action_tracking)), np.array(pre_activations_tracking), np.array(post_activations_tracking), np.array(attention_tracking)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 603 |
return predictions, certainties, synchronisation_out
|
| 604 |
|
|
|
|
| 98 |
dropout_nlm=None,
|
| 99 |
neuron_select_type='random-pairing',
|
| 100 |
n_random_pairing_self=0,
|
| 101 |
+
energy_head_enabled=False,
|
| 102 |
+
energy_hidden_dim=64,
|
| 103 |
):
|
| 104 |
super(ContinuousThoughtMachine, self).__init__()
|
| 105 |
|
|
|
|
| 117 |
self.neuron_select_type = neuron_select_type
|
| 118 |
self.memory_length = memory_length
|
| 119 |
dropout_nlm = dropout if dropout_nlm is None else dropout_nlm
|
| 120 |
+
self.energy_head_enabled = energy_head_enabled
|
| 121 |
+
self.energy_hidden_dim = energy_hidden_dim
|
| 122 |
|
| 123 |
# --- Assertions ---
|
| 124 |
self.verify_args()
|
|
|
|
| 153 |
|
| 154 |
# --- Output Procesing ---
|
| 155 |
self.output_projector = nn.Sequential(nn.LazyLinear(self.out_dims))
|
| 156 |
+
|
| 157 |
+
# --- Energy Projector ---
|
| 158 |
+
if self.energy_head_enabled:
|
| 159 |
+
self.energy_proj = nn.Sequential(
|
| 160 |
+
nn.LazyLinear(self.energy_hidden_dim),
|
| 161 |
+
nn.SiLU(),
|
| 162 |
+
nn.Linear(self.energy_hidden_dim, 1)
|
| 163 |
+
)
|
| 164 |
|
| 165 |
@classmethod
|
| 166 |
def _from_pretrained(
|
|
|
|
| 472 |
neuron_indices_left = neuron_indices_right = torch.arange(d_model-n_synch, d_model)
|
| 473 |
|
| 474 |
elif self.neuron_select_type=='random':
|
| 475 |
+
neuron_indices_left = torch.randperm(d_model)[:n_synch]
|
| 476 |
+
neuron_indices_right = torch.randperm(d_model)[:n_synch]
|
| 477 |
|
| 478 |
elif self.neuron_select_type=='random-pairing':
|
| 479 |
assert n_synch > n_random_pairing_self, f"Need at least {n_random_pairing_self} pairs for {self.neuron_select_type}"
|
| 480 |
+
neuron_indices_left = torch.randperm(d_model)[:n_synch]
|
| 481 |
+
# For right, we need to concatenate self-pairs and random pairs
|
| 482 |
+
# This logic mimics the original numpy logic but using torch
|
| 483 |
+
# Original: neuron_indices_right = torch.concatenate((neuron_indices_left[:n_random_pairing_self], torch.from_numpy(np.random.choice(np.arange(d_model), size=n_synch-n_random_pairing_self))))
|
| 484 |
+
|
| 485 |
+
# Note: The original logic allowed replacement in the random choice for the second part?
|
| 486 |
+
# np.random.choice(np.arange(d_model), size=...) defaults to replace=False if not specified? No, defaults to replace=True?
|
| 487 |
+
# Actually np.random.choice(a, size) defaults to replace=True if a is an int? No, wait.
|
| 488 |
+
# Let's assume we want random indices.
|
| 489 |
+
|
| 490 |
+
random_part = torch.randperm(d_model)[:n_synch-n_random_pairing_self]
|
| 491 |
+
neuron_indices_right = torch.cat((neuron_indices_left[:n_random_pairing_self], random_part))
|
| 492 |
|
| 493 |
device = self.start_activated_state.device
|
| 494 |
return neuron_indices_left.to(device), neuron_indices_right.to(device)
|
|
|
|
| 555 |
post_activations_tracking = []
|
| 556 |
synch_out_tracking = []
|
| 557 |
synch_action_tracking = []
|
| 558 |
+
synch_action_tracking = []
|
| 559 |
attention_tracking = []
|
| 560 |
+
energy_tracking = []
|
| 561 |
|
| 562 |
# --- Featurise Input Data ---
|
| 563 |
kv = self.compute_features(x)
|
|
|
|
| 568 |
|
| 569 |
# --- Prepare Storage for Outputs per Iteration ---
|
| 570 |
predictions = torch.empty(B, self.out_dims, self.iterations, device=device, dtype=torch.float32)
|
| 571 |
+
predictions = torch.empty(B, self.out_dims, self.iterations, device=device, dtype=torch.float32)
|
| 572 |
certainties = torch.empty(B, 2, self.iterations, device=device, dtype=torch.float32)
|
| 573 |
+
energies = torch.empty(B, 1, self.iterations, device=device, dtype=torch.float32) if self.energy_head_enabled else None
|
| 574 |
|
| 575 |
# --- Initialise Recurrent Synch Values ---
|
| 576 |
decay_alpha_action, decay_beta_action = None, None
|
|
|
|
| 612 |
current_prediction = self.output_projector(synchronisation_out)
|
| 613 |
current_certainty = self.compute_certainty(current_prediction)
|
| 614 |
|
| 615 |
+
predictions[..., stepi] = current_prediction
|
| 616 |
predictions[..., stepi] = current_prediction
|
| 617 |
certainties[..., stepi] = current_certainty
|
| 618 |
+
|
| 619 |
+
if self.energy_head_enabled:
|
| 620 |
+
current_energy = self.energy_proj(synchronisation_out)
|
| 621 |
+
energies[..., stepi] = current_energy
|
| 622 |
|
| 623 |
# --- Tracking ---
|
| 624 |
if track:
|
|
|
|
| 631 |
# --- Return Values ---
|
| 632 |
if track:
|
| 633 |
return predictions, certainties, (np.array(synch_out_tracking), np.array(synch_action_tracking)), np.array(pre_activations_tracking), np.array(post_activations_tracking), np.array(attention_tracking)
|
| 634 |
+
if track:
|
| 635 |
+
return predictions, certainties, (np.array(synch_out_tracking), np.array(synch_action_tracking)), np.array(pre_activations_tracking), np.array(post_activations_tracking), np.array(attention_tracking)
|
| 636 |
+
|
| 637 |
+
if self.energy_head_enabled:
|
| 638 |
+
return predictions, certainties, energies
|
| 639 |
+
|
| 640 |
return predictions, certainties, synchronisation_out
|
| 641 |
|
pixi.lock
CHANGED
|
@@ -203,7 +203,7 @@ environments:
|
|
| 203 |
- conda: https://conda.anaconda.org/conda-forge/noarch/networkx-3.5-pyhe01879c_0.conda
|
| 204 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/nlohmann_json-3.12.0-h248ca61_1.conda
|
| 205 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/numba-0.62.1-py312hd24c766_0.conda
|
| 206 |
-
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/numpy-
|
| 207 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/opencv-4.12.0-qt6_py312h5b798a3_607.conda
|
| 208 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/openexr-3.4.4-h3c4c831_0.conda
|
| 209 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/openh264-2.6.0-hb5b2745_0.conda
|
|
@@ -2957,17 +2957,16 @@ packages:
|
|
| 2957 |
- pkg:pypi/numba?source=hash-mapping
|
| 2958 |
size: 5691441
|
| 2959 |
timestamp: 1759165626923
|
| 2960 |
-
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/numpy-
|
| 2961 |
-
sha256:
|
| 2962 |
-
md5:
|
| 2963 |
depends:
|
| 2964 |
-
- python
|
| 2965 |
-
- __osx >=11.0
|
| 2966 |
-
- python 3.12.* *_cpython
|
| 2967 |
-
- libcxx >=19
|
| 2968 |
-
- libcblas >=3.9.0,<4.0a0
|
| 2969 |
- libblas >=3.9.0,<4.0a0
|
|
|
|
|
|
|
| 2970 |
- liblapack >=3.9.0,<4.0a0
|
|
|
|
|
|
|
| 2971 |
- python_abi 3.12.* *_cp312
|
| 2972 |
constrains:
|
| 2973 |
- numpy-base <0a0
|
|
@@ -2975,8 +2974,8 @@ packages:
|
|
| 2975 |
license_family: BSD
|
| 2976 |
purls:
|
| 2977 |
- pkg:pypi/numpy?source=hash-mapping
|
| 2978 |
-
size:
|
| 2979 |
-
timestamp:
|
| 2980 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/opencv-4.12.0-qt6_py312h5b798a3_607.conda
|
| 2981 |
sha256: 71b1ce5a0073c59d766a94ec80c6f248bba880cb4ea7763e203595a8fdab4fb5
|
| 2982 |
md5: 6ab56fafd591c51e28c0d1ed3887f8a7
|
|
|
|
| 203 |
- conda: https://conda.anaconda.org/conda-forge/noarch/networkx-3.5-pyhe01879c_0.conda
|
| 204 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/nlohmann_json-3.12.0-h248ca61_1.conda
|
| 205 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/numba-0.62.1-py312hd24c766_0.conda
|
| 206 |
+
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/numpy-1.26.4-py312h8442bc7_0.conda
|
| 207 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/opencv-4.12.0-qt6_py312h5b798a3_607.conda
|
| 208 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/openexr-3.4.4-h3c4c831_0.conda
|
| 209 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/openh264-2.6.0-hb5b2745_0.conda
|
|
|
|
| 2957 |
- pkg:pypi/numba?source=hash-mapping
|
| 2958 |
size: 5691441
|
| 2959 |
timestamp: 1759165626923
|
| 2960 |
+
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/numpy-1.26.4-py312h8442bc7_0.conda
|
| 2961 |
+
sha256: c8841d6d6f61fd70ca80682efbab6bdb8606dc77c68d8acabfbd7c222054f518
|
| 2962 |
+
md5: d83fc83d589e2625a3451c9a7e21047c
|
| 2963 |
depends:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2964 |
- libblas >=3.9.0,<4.0a0
|
| 2965 |
+
- libcblas >=3.9.0,<4.0a0
|
| 2966 |
+
- libcxx >=16
|
| 2967 |
- liblapack >=3.9.0,<4.0a0
|
| 2968 |
+
- python >=3.12,<3.13.0a0
|
| 2969 |
+
- python >=3.12,<3.13.0a0 *_cpython
|
| 2970 |
- python_abi 3.12.* *_cp312
|
| 2971 |
constrains:
|
| 2972 |
- numpy-base <0a0
|
|
|
|
| 2974 |
license_family: BSD
|
| 2975 |
purls:
|
| 2976 |
- pkg:pypi/numpy?source=hash-mapping
|
| 2977 |
+
size: 6073136
|
| 2978 |
+
timestamp: 1707226249608
|
| 2979 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/opencv-4.12.0-qt6_py312h5b798a3_607.conda
|
| 2980 |
sha256: 71b1ce5a0073c59d766a94ec80c6f248bba880cb4ea7763e203595a8fdab4fb5
|
| 2981 |
md5: 6ab56fafd591c51e28c0d1ed3887f8a7
|
pixi.toml
CHANGED
|
@@ -9,7 +9,7 @@ version = "0.1.0"
|
|
| 9 |
python = "3.12.*"
|
| 10 |
pytorch = "*"
|
| 11 |
torchvision = "*"
|
| 12 |
-
numpy = "
|
| 13 |
matplotlib = "*"
|
| 14 |
seaborn = "*"
|
| 15 |
tqdm = "*"
|
|
|
|
| 9 |
python = "3.12.*"
|
| 10 |
pytorch = "*"
|
| 11 |
torchvision = "*"
|
| 12 |
+
numpy = "<2.0"
|
| 13 |
matplotlib = "*"
|
| 14 |
seaborn = "*"
|
| 15 |
tqdm = "*"
|
tasks/image_classification/train_energy.py
ADDED
|
@@ -0,0 +1,725 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import random
|
| 4 |
+
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import numpy as np
|
| 7 |
+
import seaborn as sns
|
| 8 |
+
sns.set_style('darkgrid')
|
| 9 |
+
import torch
|
| 10 |
+
if torch.cuda.is_available():
|
| 11 |
+
# For faster
|
| 12 |
+
torch.set_float32_matmul_precision('high')
|
| 13 |
+
import torch.nn as nn
|
| 14 |
+
from tqdm.auto import tqdm
|
| 15 |
+
|
| 16 |
+
import sys
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
|
| 19 |
+
# Add project root to sys.path to allow imports from top-level packages
|
| 20 |
+
project_root = str(Path(__file__).resolve().parents[2])
|
| 21 |
+
if project_root not in sys.path:
|
| 22 |
+
sys.path.append(project_root)
|
| 23 |
+
|
| 24 |
+
from data.custom_datasets import ImageNet
|
| 25 |
+
from torchvision import datasets
|
| 26 |
+
from torchvision import transforms
|
| 27 |
+
from tasks.image_classification.imagenet_classes import IMAGENET2012_CLASSES
|
| 28 |
+
from models.ctm import ContinuousThoughtMachine
|
| 29 |
+
from models.lstm import LSTMBaseline
|
| 30 |
+
from models.ff import FFBaseline
|
| 31 |
+
from tasks.image_classification.plotting import plot_neural_dynamics, make_classification_gif
|
| 32 |
+
from utils.housekeeping import set_seed, zip_python_code
|
| 33 |
+
from utils.losses import image_classification_loss, EnergyContrastiveLoss # Used by CTM, LSTM
|
| 34 |
+
from utils.schedulers import WarmupCosineAnnealingLR, WarmupMultiStepLR, warmup
|
| 35 |
+
|
| 36 |
+
from autoclip.torch import QuantileClip
|
| 37 |
+
|
| 38 |
+
import gc
|
| 39 |
+
import torchvision
|
| 40 |
+
torchvision.disable_beta_transforms_warning()
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
import warnings
|
| 44 |
+
warnings.filterwarnings("ignore", message="using precomputed metric; inverse_transform will be unavailable")
|
| 45 |
+
warnings.filterwarnings('ignore', message='divide by zero encountered in power', category=RuntimeWarning)
|
| 46 |
+
warnings.filterwarnings(
|
| 47 |
+
"ignore",
|
| 48 |
+
"Corrupt EXIF data",
|
| 49 |
+
UserWarning,
|
| 50 |
+
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
|
| 51 |
+
)
|
| 52 |
+
warnings.filterwarnings(
|
| 53 |
+
"ignore",
|
| 54 |
+
"UserWarning: Metadata Warning",
|
| 55 |
+
UserWarning,
|
| 56 |
+
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
|
| 57 |
+
)
|
| 58 |
+
warnings.filterwarnings(
|
| 59 |
+
"ignore",
|
| 60 |
+
"UserWarning: Truncated File Read",
|
| 61 |
+
UserWarning,
|
| 62 |
+
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def parse_args():
|
| 67 |
+
parser = argparse.ArgumentParser()
|
| 68 |
+
|
| 69 |
+
# Model Selection
|
| 70 |
+
parser.add_argument('--model', type=str, default='ctm', choices=['ctm', 'lstm', 'ff'], help='Model type to train.')
|
| 71 |
+
|
| 72 |
+
# Model Architecture
|
| 73 |
+
# Common
|
| 74 |
+
parser.add_argument('--d_model', type=int, default=512, help='Dimension of the model.')
|
| 75 |
+
parser.add_argument('--dropout', type=float, default=0.0, help='Dropout rate.')
|
| 76 |
+
parser.add_argument('--backbone_type', type=str, default='resnet18-4', help='Type of backbone featureiser.')
|
| 77 |
+
# CTM / LSTM specific
|
| 78 |
+
parser.add_argument('--d_input', type=int, default=128, help='Dimension of the input (CTM, LSTM).')
|
| 79 |
+
parser.add_argument('--heads', type=int, default=4, help='Number of attention heads (CTM, LSTM).')
|
| 80 |
+
parser.add_argument('--iterations', type=int, default=75, help='Number of internal ticks (CTM, LSTM).')
|
| 81 |
+
parser.add_argument('--positional_embedding_type', type=str, default='none', help='Type of positional embedding (CTM, LSTM).',
|
| 82 |
+
choices=['none',
|
| 83 |
+
'learnable-fourier',
|
| 84 |
+
'multi-learnable-fourier',
|
| 85 |
+
'custom-rotational'])
|
| 86 |
+
# CTM specific
|
| 87 |
+
parser.add_argument('--synapse_depth', type=int, default=4, help='Depth of U-NET model for synapse. 1=linear, no unet (CTM only).')
|
| 88 |
+
parser.add_argument('--n_synch_out', type=int, default=512, help='Number of neurons to use for output synch (CTM only).')
|
| 89 |
+
parser.add_argument('--n_synch_action', type=int, default=512, help='Number of neurons to use for observation/action synch (CTM only).')
|
| 90 |
+
parser.add_argument('--neuron_select_type', type=str, default='random-pairing', help='Protocol for selecting neuron subset (CTM only).')
|
| 91 |
+
parser.add_argument('--n_random_pairing_self', type=int, default=0, help='Number of neurons paired self-to-self for synch (CTM only).')
|
| 92 |
+
parser.add_argument('--memory_length', type=int, default=25, help='Length of the pre-activation history for NLMS (CTM only).')
|
| 93 |
+
parser.add_argument('--deep_memory', action=argparse.BooleanOptionalAction, default=True, help='Use deep memory (CTM only).')
|
| 94 |
+
parser.add_argument('--memory_hidden_dims', type=int, default=4, help='Hidden dimensions of the memory if using deep memory (CTM only).')
|
| 95 |
+
parser.add_argument('--dropout_nlm', type=float, default=None, help='Dropout rate for NLMs specifically. Unset to match dropout on the rest of the model (CTM only).')
|
| 96 |
+
parser.add_argument('--do_normalisation', action=argparse.BooleanOptionalAction, default=False, help='Apply normalization in NLMs (CTM only).')
|
| 97 |
+
|
| 98 |
+
# Energy Head
|
| 99 |
+
parser.add_argument('--energy_head_enabled', action=argparse.BooleanOptionalAction, default=False, help='Enable energy head.')
|
| 100 |
+
parser.add_argument('--energy_hidden_dim', type=int, default=64, help='Hidden dim for energy head.')
|
| 101 |
+
parser.add_argument('--loss_type', type=str, default='standard', choices=['standard', 'energy_contrastive'], help='Loss type.')
|
| 102 |
+
parser.add_argument('--energy_margin', type=float, default=10.0, help='Margin for energy loss.')
|
| 103 |
+
parser.add_argument('--energy_scale', type=float, default=0.1, help='Scale for energy loss.')
|
| 104 |
+
|
| 105 |
+
# LSTM specific
|
| 106 |
+
parser.add_argument('--num_layers', type=int, default=2, help='Number of LSTM stacked layers (LSTM only).')
|
| 107 |
+
|
| 108 |
+
# Training
|
| 109 |
+
parser.add_argument('--batch_size', type=int, default=32, help='Batch size for training.')
|
| 110 |
+
parser.add_argument('--batch_size_test', type=int, default=32, help='Batch size for testing.')
|
| 111 |
+
parser.add_argument('--lr', type=float, default=1e-3, help='Learning rate for the model.')
|
| 112 |
+
parser.add_argument('--training_iterations', type=int, default=100001, help='Number of training iterations.')
|
| 113 |
+
parser.add_argument('--warmup_steps', type=int, default=5000, help='Number of warmup steps.')
|
| 114 |
+
parser.add_argument('--use_scheduler', action=argparse.BooleanOptionalAction, default=True, help='Use a learning rate scheduler.')
|
| 115 |
+
parser.add_argument('--scheduler_type', type=str, default='cosine', choices=['multistep', 'cosine'], help='Type of learning rate scheduler.')
|
| 116 |
+
parser.add_argument('--milestones', type=int, default=[8000, 15000, 20000], nargs='+', help='Learning rate scheduler milestones.')
|
| 117 |
+
parser.add_argument('--gamma', type=float, default=0.1, help='Learning rate scheduler gamma for multistep.')
|
| 118 |
+
parser.add_argument('--weight_decay', type=float, default=0.0, help='Weight decay factor.')
|
| 119 |
+
parser.add_argument('--weight_decay_exclusion_list', type=str, nargs='+', default=[], help='List to exclude from weight decay. Typically good: bn, ln, bias, start')
|
| 120 |
+
parser.add_argument('--gradient_clipping', type=float, default=-1, help='Gradient quantile clipping value (-1 to disable).')
|
| 121 |
+
parser.add_argument('--do_compile', action=argparse.BooleanOptionalAction, default=False, help='Try to compile model components (backbone, synapses if CTM).')
|
| 122 |
+
parser.add_argument('--num_workers_train', type=int, default=1, help='Num workers training.')
|
| 123 |
+
|
| 124 |
+
# Housekeeping
|
| 125 |
+
parser.add_argument('--log_dir', type=str, default='logs/scratch', help='Directory for logging.')
|
| 126 |
+
parser.add_argument('--dataset', type=str, default='cifar10', help='Dataset to use.')
|
| 127 |
+
parser.add_argument('--data_root', type=str, default='data/', help='Where to save dataset.')
|
| 128 |
+
parser.add_argument('--save_every', type=int, default=1000, help='Save checkpoints every this many iterations.')
|
| 129 |
+
parser.add_argument('--seed', type=int, default=412, help='Random seed.')
|
| 130 |
+
parser.add_argument('--reload', action=argparse.BooleanOptionalAction, default=False, help='Reload from disk?')
|
| 131 |
+
parser.add_argument('--reload_model_only', action=argparse.BooleanOptionalAction, default=False, help='Reload only the model from disk?')
|
| 132 |
+
parser.add_argument('--strict_reload', action=argparse.BooleanOptionalAction, default=True, help='Should use strict reload for model weights.') # Added back
|
| 133 |
+
parser.add_argument('--track_every', type=int, default=1000, help='Track metrics every this many iterations.')
|
| 134 |
+
parser.add_argument('--n_test_batches', type=int, default=20, help='How many minibatches to approx metrics. Set to -1 for full eval')
|
| 135 |
+
parser.add_argument('--device', type=int, nargs='+', default=[-1], help='List of GPU(s) to use. Set to -1 to use CPU.')
|
| 136 |
+
parser.add_argument('--use_amp', action=argparse.BooleanOptionalAction, default=False, help='AMP autocast.')
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
args = parser.parse_args()
|
| 140 |
+
return args
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def get_dataset(dataset, root):
|
| 144 |
+
if dataset=='imagenet':
|
| 145 |
+
dataset_mean = [0.485, 0.456, 0.406]
|
| 146 |
+
dataset_std = [0.229, 0.224, 0.225]
|
| 147 |
+
|
| 148 |
+
normalize = transforms.Normalize(mean=dataset_mean, std=dataset_std)
|
| 149 |
+
train_transform = transforms.Compose([
|
| 150 |
+
transforms.RandomResizedCrop(224),
|
| 151 |
+
transforms.RandomHorizontalFlip(),
|
| 152 |
+
transforms.ToTensor(),
|
| 153 |
+
normalize])
|
| 154 |
+
test_transform = transforms.Compose([
|
| 155 |
+
transforms.Resize(256),
|
| 156 |
+
transforms.CenterCrop(224),
|
| 157 |
+
transforms.ToTensor(),
|
| 158 |
+
normalize])
|
| 159 |
+
|
| 160 |
+
class_labels = list(IMAGENET2012_CLASSES.values())
|
| 161 |
+
|
| 162 |
+
train_data = ImageNet(which_split='train', transform=train_transform)
|
| 163 |
+
test_data = ImageNet(which_split='validation', transform=test_transform)
|
| 164 |
+
elif dataset=='cifar10':
|
| 165 |
+
dataset_mean = [0.49139968, 0.48215827, 0.44653124]
|
| 166 |
+
dataset_std = [0.24703233, 0.24348505, 0.26158768]
|
| 167 |
+
normalize = transforms.Normalize(mean=dataset_mean, std=dataset_std)
|
| 168 |
+
train_transform = transforms.Compose(
|
| 169 |
+
[transforms.AutoAugment(transforms.AutoAugmentPolicy.CIFAR10),
|
| 170 |
+
transforms.ToTensor(),
|
| 171 |
+
normalize,
|
| 172 |
+
])
|
| 173 |
+
|
| 174 |
+
test_transform = transforms.Compose(
|
| 175 |
+
[transforms.ToTensor(),
|
| 176 |
+
normalize,
|
| 177 |
+
])
|
| 178 |
+
train_data = datasets.CIFAR10(root, train=True, transform=train_transform, download=True)
|
| 179 |
+
test_data = datasets.CIFAR10(root, train=False, transform=test_transform, download=True)
|
| 180 |
+
class_labels = ['air', 'auto', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
|
| 181 |
+
elif dataset=='cifar100':
|
| 182 |
+
dataset_mean = [0.5070751592371341, 0.48654887331495067, 0.4409178433670344]
|
| 183 |
+
dataset_std = [0.2673342858792403, 0.2564384629170882, 0.27615047132568393]
|
| 184 |
+
normalize = transforms.Normalize(mean=dataset_mean, std=dataset_std)
|
| 185 |
+
|
| 186 |
+
train_transform = transforms.Compose(
|
| 187 |
+
[transforms.AutoAugment(transforms.AutoAugmentPolicy.CIFAR10),
|
| 188 |
+
transforms.ToTensor(),
|
| 189 |
+
normalize,
|
| 190 |
+
])
|
| 191 |
+
test_transform = transforms.Compose(
|
| 192 |
+
[transforms.ToTensor(),
|
| 193 |
+
normalize,
|
| 194 |
+
])
|
| 195 |
+
train_data = datasets.CIFAR100(root, train=True, transform=train_transform, download=True)
|
| 196 |
+
test_data = datasets.CIFAR100(root, train=False, transform=test_transform, download=True)
|
| 197 |
+
idx_order = np.argsort(np.array(list(train_data.class_to_idx.values())))
|
| 198 |
+
class_labels = list(np.array(list(train_data.class_to_idx.keys()))[idx_order])
|
| 199 |
+
else:
|
| 200 |
+
raise NotImplementedError
|
| 201 |
+
|
| 202 |
+
return train_data, test_data, class_labels, dataset_mean, dataset_std
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
if __name__=='__main__':
|
| 207 |
+
|
| 208 |
+
# Hosuekeeping
|
| 209 |
+
args = parse_args()
|
| 210 |
+
|
| 211 |
+
set_seed(args.seed, False)
|
| 212 |
+
if not os.path.exists(args.log_dir): os.makedirs(args.log_dir)
|
| 213 |
+
|
| 214 |
+
assert args.dataset in ['cifar10', 'cifar100', 'imagenet']
|
| 215 |
+
|
| 216 |
+
# Data
|
| 217 |
+
train_data, test_data, class_labels, dataset_mean, dataset_std = get_dataset(args.dataset, args.data_root)
|
| 218 |
+
|
| 219 |
+
num_workers_test = 1 # Defaulting to 1, change if needed
|
| 220 |
+
trainloader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers_train)
|
| 221 |
+
testloader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test, drop_last=False)
|
| 222 |
+
|
| 223 |
+
prediction_reshaper = [-1] # Problem specific
|
| 224 |
+
args.out_dims = len(class_labels)
|
| 225 |
+
|
| 226 |
+
# For total reproducibility
|
| 227 |
+
zip_python_code(f'{args.log_dir}/repo_state.zip')
|
| 228 |
+
with open(f'{args.log_dir}/args.txt', 'w') as f:
|
| 229 |
+
print(args, file=f)
|
| 230 |
+
|
| 231 |
+
# Configure device string (support MPS on macOS)
|
| 232 |
+
if args.device[0] != -1:
|
| 233 |
+
device = f'cuda:{args.device[0]}'
|
| 234 |
+
elif torch.backends.mps.is_available():
|
| 235 |
+
device = 'mps'
|
| 236 |
+
else:
|
| 237 |
+
device = 'cpu'
|
| 238 |
+
print(f'Running model {args.model} on {device}')
|
| 239 |
+
|
| 240 |
+
# Build model conditionally
|
| 241 |
+
model = None
|
| 242 |
+
if args.model == 'ctm':
|
| 243 |
+
model = ContinuousThoughtMachine(
|
| 244 |
+
iterations=args.iterations,
|
| 245 |
+
d_model=args.d_model,
|
| 246 |
+
d_input=args.d_input,
|
| 247 |
+
heads=args.heads,
|
| 248 |
+
n_synch_out=args.n_synch_out,
|
| 249 |
+
n_synch_action=args.n_synch_action,
|
| 250 |
+
synapse_depth=args.synapse_depth,
|
| 251 |
+
memory_length=args.memory_length,
|
| 252 |
+
deep_nlms=args.deep_memory,
|
| 253 |
+
memory_hidden_dims=args.memory_hidden_dims,
|
| 254 |
+
do_layernorm_nlm=args.do_normalisation,
|
| 255 |
+
backbone_type=args.backbone_type,
|
| 256 |
+
positional_embedding_type=args.positional_embedding_type,
|
| 257 |
+
out_dims=args.out_dims,
|
| 258 |
+
prediction_reshaper=prediction_reshaper,
|
| 259 |
+
dropout=args.dropout,
|
| 260 |
+
dropout_nlm=args.dropout_nlm,
|
| 261 |
+
neuron_select_type=args.neuron_select_type,
|
| 262 |
+
n_random_pairing_self=args.n_random_pairing_self,
|
| 263 |
+
energy_head_enabled=args.energy_head_enabled,
|
| 264 |
+
energy_hidden_dim=args.energy_hidden_dim,
|
| 265 |
+
).to(device)
|
| 266 |
+
elif args.model == 'lstm':
|
| 267 |
+
model = LSTMBaseline(
|
| 268 |
+
num_layers=args.num_layers,
|
| 269 |
+
iterations=args.iterations,
|
| 270 |
+
d_model=args.d_model,
|
| 271 |
+
d_input=args.d_input,
|
| 272 |
+
heads=args.heads,
|
| 273 |
+
backbone_type=args.backbone_type,
|
| 274 |
+
positional_embedding_type=args.positional_embedding_type,
|
| 275 |
+
out_dims=args.out_dims,
|
| 276 |
+
prediction_reshaper=prediction_reshaper,
|
| 277 |
+
dropout=args.dropout,
|
| 278 |
+
).to(device)
|
| 279 |
+
elif args.model == 'ff':
|
| 280 |
+
model = FFBaseline(
|
| 281 |
+
d_model=args.d_model,
|
| 282 |
+
backbone_type=args.backbone_type,
|
| 283 |
+
out_dims=args.out_dims,
|
| 284 |
+
dropout=args.dropout,
|
| 285 |
+
).to(device)
|
| 286 |
+
else:
|
| 287 |
+
raise ValueError(f"Unknown model type: {args.model}")
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
# For lazy modules so that we can get param count
|
| 291 |
+
pseudo_inputs = train_data.__getitem__(0)[0].unsqueeze(0).to(device)
|
| 292 |
+
model(pseudo_inputs)
|
| 293 |
+
|
| 294 |
+
model.train()
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
print(f'Total params: {sum(p.numel() for p in model.parameters())}')
|
| 298 |
+
decay_params = []
|
| 299 |
+
no_decay_params = []
|
| 300 |
+
no_decay_names = []
|
| 301 |
+
for name, param in model.named_parameters():
|
| 302 |
+
if not param.requires_grad:
|
| 303 |
+
continue # Skip parameters that don't require gradients
|
| 304 |
+
if any(exclusion_str in name for exclusion_str in args.weight_decay_exclusion_list):
|
| 305 |
+
no_decay_params.append(param)
|
| 306 |
+
no_decay_names.append(name)
|
| 307 |
+
else:
|
| 308 |
+
decay_params.append(param)
|
| 309 |
+
if len(no_decay_names):
|
| 310 |
+
print(f'WARNING, excluding: {no_decay_names}')
|
| 311 |
+
|
| 312 |
+
# Optimizer and scheduler (Common setup)
|
| 313 |
+
if len(no_decay_names) and args.weight_decay!=0:
|
| 314 |
+
optimizer = torch.optim.AdamW([{'params': decay_params, 'weight_decay':args.weight_decay},
|
| 315 |
+
{'params': no_decay_params, 'weight_decay':0}],
|
| 316 |
+
lr=args.lr,
|
| 317 |
+
eps=1e-8 if not args.use_amp else 1e-6)
|
| 318 |
+
else:
|
| 319 |
+
optimizer = torch.optim.AdamW(model.parameters(),
|
| 320 |
+
lr=args.lr,
|
| 321 |
+
eps=1e-8 if not args.use_amp else 1e-6,
|
| 322 |
+
weight_decay=args.weight_decay)
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
warmup_schedule = warmup(args.warmup_steps)
|
| 326 |
+
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=warmup_schedule.step)
|
| 327 |
+
if args.use_scheduler:
|
| 328 |
+
if args.scheduler_type == 'multistep':
|
| 329 |
+
scheduler = WarmupMultiStepLR(optimizer, warmup_steps=args.warmup_steps, milestones=args.milestones, gamma=args.gamma)
|
| 330 |
+
elif args.scheduler_type == 'cosine':
|
| 331 |
+
scheduler = WarmupCosineAnnealingLR(optimizer, args.warmup_steps, args.training_iterations, warmup_start_lr=1e-20, eta_min=1e-7)
|
| 332 |
+
else:
|
| 333 |
+
raise NotImplementedError
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
# Metrics tracking
|
| 337 |
+
start_iter = 0
|
| 338 |
+
train_losses = []
|
| 339 |
+
test_losses = []
|
| 340 |
+
train_accuracies = []
|
| 341 |
+
test_accuracies = []
|
| 342 |
+
iters = []
|
| 343 |
+
# Conditional metrics for CTM/LSTM
|
| 344 |
+
train_accuracies_most_certain = [] if args.model in ['ctm', 'lstm'] else None
|
| 345 |
+
test_accuracies_most_certain = [] if args.model in ['ctm', 'lstm'] else None
|
| 346 |
+
|
| 347 |
+
# scaler = torch.amp.GradScaler("cuda" if "cuda" in device else "cpu", enabled=args.use_amp)
|
| 348 |
+
# Fallback for older torch versions or specific builds
|
| 349 |
+
scaler = torch.cuda.amp.GradScaler(enabled=args.use_amp)
|
| 350 |
+
|
| 351 |
+
# Reloading logic
|
| 352 |
+
if args.reload:
|
| 353 |
+
checkpoint_path = f'{args.log_dir}/checkpoint.pt'
|
| 354 |
+
if os.path.isfile(checkpoint_path):
|
| 355 |
+
print(f'Reloading from: {checkpoint_path}')
|
| 356 |
+
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
|
| 357 |
+
if not args.strict_reload: print('WARNING: not using strict reload for model weights!')
|
| 358 |
+
load_result = model.load_state_dict(checkpoint['model_state_dict'], strict=args.strict_reload)
|
| 359 |
+
print(f" Loaded state_dict. Missing: {load_result.missing_keys}, Unexpected: {load_result.unexpected_keys}")
|
| 360 |
+
|
| 361 |
+
if not args.reload_model_only:
|
| 362 |
+
print('Reloading optimizer etc.')
|
| 363 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
| 364 |
+
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
|
| 365 |
+
scaler.load_state_dict(checkpoint['scaler_state_dict'])
|
| 366 |
+
start_iter = checkpoint['iteration']
|
| 367 |
+
# Load common metrics
|
| 368 |
+
train_losses = checkpoint['train_losses']
|
| 369 |
+
test_losses = checkpoint['test_losses']
|
| 370 |
+
train_accuracies = checkpoint['train_accuracies']
|
| 371 |
+
test_accuracies = checkpoint['test_accuracies']
|
| 372 |
+
iters = checkpoint['iters']
|
| 373 |
+
|
| 374 |
+
# Load conditional metrics if they exist in checkpoint and are expected for current model
|
| 375 |
+
if args.model in ['ctm', 'lstm']:
|
| 376 |
+
train_accuracies_most_certain = checkpoint['train_accuracies_most_certain']
|
| 377 |
+
test_accuracies_most_certain = checkpoint['test_accuracies_most_certain']
|
| 378 |
+
|
| 379 |
+
else:
|
| 380 |
+
print('Only reloading model!')
|
| 381 |
+
|
| 382 |
+
if 'torch_rng_state' in checkpoint:
|
| 383 |
+
# Reset seeds
|
| 384 |
+
torch.set_rng_state(checkpoint['torch_rng_state'].cpu().byte())
|
| 385 |
+
np.random.set_state(checkpoint['numpy_rng_state'])
|
| 386 |
+
random.setstate(checkpoint['random_rng_state'])
|
| 387 |
+
|
| 388 |
+
del checkpoint
|
| 389 |
+
gc.collect()
|
| 390 |
+
if torch.cuda.is_available():
|
| 391 |
+
torch.cuda.empty_cache()
|
| 392 |
+
|
| 393 |
+
# Conditional Compilation
|
| 394 |
+
if args.do_compile:
|
| 395 |
+
print('Compiling...')
|
| 396 |
+
if hasattr(model, 'backbone'):
|
| 397 |
+
model.backbone = torch.compile(model.backbone, mode='reduce-overhead', fullgraph=True)
|
| 398 |
+
|
| 399 |
+
# Compile synapses only for CTM
|
| 400 |
+
if args.model == 'ctm':
|
| 401 |
+
model.synapses = torch.compile(model.synapses, mode='reduce-overhead', fullgraph=True)
|
| 402 |
+
|
| 403 |
+
# Training
|
| 404 |
+
iterator = iter(trainloader)
|
| 405 |
+
|
| 406 |
+
|
| 407 |
+
with tqdm(total=args.training_iterations, initial=start_iter, leave=False, position=0, dynamic_ncols=True) as pbar:
|
| 408 |
+
for bi in range(start_iter, args.training_iterations):
|
| 409 |
+
current_lr = optimizer.param_groups[-1]['lr']
|
| 410 |
+
|
| 411 |
+
try:
|
| 412 |
+
inputs, targets = next(iterator)
|
| 413 |
+
except StopIteration:
|
| 414 |
+
iterator = iter(trainloader)
|
| 415 |
+
inputs, targets = next(iterator)
|
| 416 |
+
|
| 417 |
+
inputs = inputs.to(device)
|
| 418 |
+
targets = targets.to(device)
|
| 419 |
+
|
| 420 |
+
loss = None
|
| 421 |
+
accuracy = None
|
| 422 |
+
# Model-specific forward and loss calculation
|
| 423 |
+
with torch.autocast(device_type="cuda" if "cuda" in device else "cpu", dtype=torch.float16, enabled=args.use_amp):
|
| 424 |
+
if args.do_compile: # CUDAGraph marking for clean compile
|
| 425 |
+
torch.compiler.cudagraph_mark_step_begin()
|
| 426 |
+
|
| 427 |
+
if args.model == 'ctm':
|
| 428 |
+
if args.energy_head_enabled:
|
| 429 |
+
predictions, certainties, energies = model(inputs)
|
| 430 |
+
if args.loss_type == 'energy_contrastive':
|
| 431 |
+
criterion = EnergyContrastiveLoss(margin=args.energy_margin, energy_scale=args.energy_scale)
|
| 432 |
+
loss, stats = criterion(predictions, energies, targets)
|
| 433 |
+
# Use standard accuracy metric for now
|
| 434 |
+
where_most_certain = certainties[:,1].argmax(-1)
|
| 435 |
+
accuracy = (predictions.argmax(1)[torch.arange(predictions.size(0), device=predictions.device),where_most_certain] == targets).float().mean().item()
|
| 436 |
+
pbar_desc = f'CTM Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}. Avg Energy={stats["avg_energy"]:0.3f}'
|
| 437 |
+
else:
|
| 438 |
+
# Fallback to standard loss even if energy head is enabled (but unused)
|
| 439 |
+
loss, where_most_certain = image_classification_loss(predictions, certainties, targets, use_most_certain=True)
|
| 440 |
+
accuracy = (predictions.argmax(1)[torch.arange(predictions.size(0), device=predictions.device),where_most_certain] == targets).float().mean().item()
|
| 441 |
+
pbar_desc = f'CTM Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}'
|
| 442 |
+
else:
|
| 443 |
+
predictions, certainties, synchronisation = model(inputs)
|
| 444 |
+
loss, where_most_certain = image_classification_loss(predictions, certainties, targets, use_most_certain=True)
|
| 445 |
+
accuracy = (predictions.argmax(1)[torch.arange(predictions.size(0), device=predictions.device),where_most_certain] == targets).float().mean().item()
|
| 446 |
+
pbar_desc = f'CTM Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}. Where_certain={where_most_certain.float().mean().item():0.2f}+-{where_most_certain.float().std().item():0.2f} ({where_most_certain.min().item():d}<->{where_most_certain.max().item():d})'
|
| 447 |
+
|
| 448 |
+
elif args.model == 'lstm':
|
| 449 |
+
predictions, certainties, synchronisation = model(inputs)
|
| 450 |
+
loss, where_most_certain = image_classification_loss(predictions, certainties, targets, use_most_certain=True)
|
| 451 |
+
# LSTM where_most_certain will just be -1 because use_most_certain is False owing to stability issues with LSTM training
|
| 452 |
+
accuracy = (predictions.argmax(1)[torch.arange(predictions.size(0), device=predictions.device),where_most_certain] == targets).float().mean().item()
|
| 453 |
+
pbar_desc = f'LSTM Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}. Where_certain={where_most_certain.float().mean().item():0.2f}+-{where_most_certain.float().std().item():0.2f} ({where_most_certain.min().item():d}<->{where_most_certain.max().item():d})'
|
| 454 |
+
|
| 455 |
+
elif args.model == 'ff':
|
| 456 |
+
predictions = model(inputs)
|
| 457 |
+
loss = nn.CrossEntropyLoss()(predictions, targets)
|
| 458 |
+
accuracy = (predictions.argmax(1) == targets).float().mean().item()
|
| 459 |
+
pbar_desc = f'FF Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}'
|
| 460 |
+
|
| 461 |
+
scaler.scale(loss).backward()
|
| 462 |
+
|
| 463 |
+
if args.gradient_clipping!=-1:
|
| 464 |
+
scaler.unscale_(optimizer)
|
| 465 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=args.gradient_clipping)
|
| 466 |
+
|
| 467 |
+
scaler.step(optimizer)
|
| 468 |
+
scaler.update()
|
| 469 |
+
optimizer.zero_grad(set_to_none=True)
|
| 470 |
+
scheduler.step()
|
| 471 |
+
|
| 472 |
+
pbar.set_description(f'Dataset={args.dataset}. Model={args.model}. {pbar_desc}')
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
# Metrics tracking and plotting (conditional logic needed)
|
| 476 |
+
if (bi % args.track_every == 0 or bi == args.warmup_steps) and (bi != 0 or args.reload_model_only):
|
| 477 |
+
|
| 478 |
+
iters.append(bi)
|
| 479 |
+
current_train_losses = []
|
| 480 |
+
current_test_losses = []
|
| 481 |
+
current_train_accuracies = [] # Holds list of accuracies per tick for CTM/LSTM, single value for FF
|
| 482 |
+
current_test_accuracies = [] # Holds list of accuracies per tick for CTM/LSTM, single value for FF
|
| 483 |
+
current_train_accuracies_most_certain = [] # Only for CTM/LSTM
|
| 484 |
+
current_test_accuracies_most_certain = [] # Only for CTM/LSTM
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
# Reset BN stats using train mode
|
| 488 |
+
pbar.set_description('Resetting BN')
|
| 489 |
+
model.train()
|
| 490 |
+
for module in model.modules():
|
| 491 |
+
if isinstance(module, (torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d)):
|
| 492 |
+
module.reset_running_stats()
|
| 493 |
+
|
| 494 |
+
pbar.set_description('Tracking: Computing TRAIN metrics')
|
| 495 |
+
with torch.no_grad(): # Should use inference_mode? CTM/LSTM scripts used no_grad
|
| 496 |
+
loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test)
|
| 497 |
+
all_targets_list = []
|
| 498 |
+
all_predictions_list = [] # List to store raw predictions (B, C, T) or (B, C)
|
| 499 |
+
all_predictions_most_certain_list = [] # Only for CTM/LSTM
|
| 500 |
+
all_losses = []
|
| 501 |
+
|
| 502 |
+
with tqdm(total=len(loader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
|
| 503 |
+
for inferi, (inputs, targets) in enumerate(loader):
|
| 504 |
+
inputs = inputs.to(device)
|
| 505 |
+
targets = targets.to(device)
|
| 506 |
+
all_targets_list.append(targets.detach().cpu().numpy())
|
| 507 |
+
|
| 508 |
+
# Model-specific forward and loss for evaluation
|
| 509 |
+
if args.model == 'ctm':
|
| 510 |
+
these_predictions, certainties, _ = model(inputs)
|
| 511 |
+
loss, where_most_certain = image_classification_loss(these_predictions, certainties, targets, use_most_certain=True)
|
| 512 |
+
all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy()) # Shape (B, T)
|
| 513 |
+
all_predictions_most_certain_list.append(these_predictions.argmax(1)[torch.arange(these_predictions.size(0), device=these_predictions.device), where_most_certain].detach().cpu().numpy()) # Shape (B,)
|
| 514 |
+
|
| 515 |
+
elif args.model == 'lstm':
|
| 516 |
+
these_predictions, certainties, _ = model(inputs)
|
| 517 |
+
loss, where_most_certain = image_classification_loss(these_predictions, certainties, targets, use_most_certain=True)
|
| 518 |
+
all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy()) # Shape (B, T)
|
| 519 |
+
all_predictions_most_certain_list.append(these_predictions.argmax(1)[torch.arange(these_predictions.size(0), device=these_predictions.device), where_most_certain].detach().cpu().numpy()) # Shape (B,)
|
| 520 |
+
|
| 521 |
+
elif args.model == 'ff':
|
| 522 |
+
these_predictions = model(inputs)
|
| 523 |
+
loss = nn.CrossEntropyLoss()(these_predictions, targets)
|
| 524 |
+
all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy()) # Shape (B,)
|
| 525 |
+
|
| 526 |
+
all_losses.append(loss.item())
|
| 527 |
+
|
| 528 |
+
if args.n_test_batches != -1 and inferi >= args.n_test_batches -1 : break # Check condition >= N-1
|
| 529 |
+
pbar_inner.set_description(f'Computing metrics for train (Batch {inferi+1})')
|
| 530 |
+
pbar_inner.update(1)
|
| 531 |
+
|
| 532 |
+
all_targets = np.concatenate(all_targets_list)
|
| 533 |
+
all_predictions = np.concatenate(all_predictions_list) # Shape (N, T) or (N,)
|
| 534 |
+
train_losses.append(np.mean(all_losses))
|
| 535 |
+
|
| 536 |
+
if args.model in ['ctm', 'lstm']:
|
| 537 |
+
# Accuracies per tick for CTM/LSTM
|
| 538 |
+
current_train_accuracies = np.mean(all_predictions == all_targets[...,np.newaxis], axis=0) # Mean over batch dim -> Shape (T,)
|
| 539 |
+
train_accuracies.append(current_train_accuracies)
|
| 540 |
+
# Most certain accuracy
|
| 541 |
+
all_predictions_most_certain = np.concatenate(all_predictions_most_certain_list)
|
| 542 |
+
current_train_accuracies_most_certain = (all_targets == all_predictions_most_certain).mean()
|
| 543 |
+
train_accuracies_most_certain.append(current_train_accuracies_most_certain)
|
| 544 |
+
else: # FF
|
| 545 |
+
current_train_accuracies = (all_targets == all_predictions).mean() # Shape scalar
|
| 546 |
+
train_accuracies.append(current_train_accuracies)
|
| 547 |
+
|
| 548 |
+
del these_predictions
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
# Switch to eval mode for test metrics (fixed BN stats)
|
| 552 |
+
model.eval()
|
| 553 |
+
pbar.set_description('Tracking: Computing TEST metrics')
|
| 554 |
+
with torch.inference_mode(): # Use inference_mode for test eval
|
| 555 |
+
loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test)
|
| 556 |
+
all_targets_list = []
|
| 557 |
+
all_predictions_list = []
|
| 558 |
+
all_predictions_most_certain_list = [] # Only for CTM/LSTM
|
| 559 |
+
all_losses = []
|
| 560 |
+
|
| 561 |
+
with tqdm(total=len(loader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
|
| 562 |
+
for inferi, (inputs, targets) in enumerate(loader):
|
| 563 |
+
inputs = inputs.to(device)
|
| 564 |
+
targets = targets.to(device)
|
| 565 |
+
all_targets_list.append(targets.detach().cpu().numpy())
|
| 566 |
+
|
| 567 |
+
# Model-specific forward and loss for evaluation
|
| 568 |
+
if args.model == 'ctm':
|
| 569 |
+
these_predictions, certainties, _ = model(inputs)
|
| 570 |
+
loss, where_most_certain = image_classification_loss(these_predictions, certainties, targets, use_most_certain=True)
|
| 571 |
+
all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy())
|
| 572 |
+
all_predictions_most_certain_list.append(these_predictions.argmax(1)[torch.arange(these_predictions.size(0), device=these_predictions.device), where_most_certain].detach().cpu().numpy())
|
| 573 |
+
|
| 574 |
+
elif args.model == 'lstm':
|
| 575 |
+
these_predictions, certainties, _ = model(inputs)
|
| 576 |
+
loss, where_most_certain = image_classification_loss(these_predictions, certainties, targets, use_most_certain=True)
|
| 577 |
+
all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy())
|
| 578 |
+
all_predictions_most_certain_list.append(these_predictions.argmax(1)[torch.arange(these_predictions.size(0), device=these_predictions.device), where_most_certain].detach().cpu().numpy())
|
| 579 |
+
|
| 580 |
+
elif args.model == 'ff':
|
| 581 |
+
these_predictions = model(inputs)
|
| 582 |
+
loss = nn.CrossEntropyLoss()(these_predictions, targets)
|
| 583 |
+
all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy())
|
| 584 |
+
|
| 585 |
+
all_losses.append(loss.item())
|
| 586 |
+
|
| 587 |
+
if args.n_test_batches != -1 and inferi >= args.n_test_batches -1: break
|
| 588 |
+
pbar_inner.set_description(f'Computing metrics for test (Batch {inferi+1})')
|
| 589 |
+
pbar_inner.update(1)
|
| 590 |
+
|
| 591 |
+
all_targets = np.concatenate(all_targets_list)
|
| 592 |
+
all_predictions = np.concatenate(all_predictions_list)
|
| 593 |
+
test_losses.append(np.mean(all_losses))
|
| 594 |
+
|
| 595 |
+
if args.model in ['ctm', 'lstm']:
|
| 596 |
+
current_test_accuracies = np.mean(all_predictions == all_targets[...,np.newaxis], axis=0)
|
| 597 |
+
test_accuracies.append(current_test_accuracies)
|
| 598 |
+
all_predictions_most_certain = np.concatenate(all_predictions_most_certain_list)
|
| 599 |
+
current_test_accuracies_most_certain = (all_targets == all_predictions_most_certain).mean()
|
| 600 |
+
test_accuracies_most_certain.append(current_test_accuracies_most_certain)
|
| 601 |
+
else: # FF
|
| 602 |
+
current_test_accuracies = (all_targets == all_predictions).mean()
|
| 603 |
+
test_accuracies.append(current_test_accuracies)
|
| 604 |
+
|
| 605 |
+
# Plotting (conditional)
|
| 606 |
+
figacc = plt.figure(figsize=(10, 10))
|
| 607 |
+
axacc_train = figacc.add_subplot(211)
|
| 608 |
+
axacc_test = figacc.add_subplot(212)
|
| 609 |
+
cm = sns.color_palette("viridis", as_cmap=True)
|
| 610 |
+
|
| 611 |
+
if args.model in ['ctm', 'lstm']:
|
| 612 |
+
# Plot per-tick accuracy for CTM/LSTM
|
| 613 |
+
train_acc_arr = np.array(train_accuracies) # Shape (N_iters, T)
|
| 614 |
+
test_acc_arr = np.array(test_accuracies) # Shape (N_iters, T)
|
| 615 |
+
num_ticks = train_acc_arr.shape[1]
|
| 616 |
+
for ti in range(num_ticks):
|
| 617 |
+
axacc_train.plot(iters, train_acc_arr[:, ti], color=cm(ti / num_ticks), alpha=0.3)
|
| 618 |
+
axacc_test.plot(iters, test_acc_arr[:, ti], color=cm(ti / num_ticks), alpha=0.3)
|
| 619 |
+
# Plot most certain accuracy
|
| 620 |
+
axacc_train.plot(iters, train_accuracies_most_certain, 'k--', alpha=0.7, label='Most certain')
|
| 621 |
+
axacc_test.plot(iters, test_accuracies_most_certain, 'k--', alpha=0.7, label='Most certain')
|
| 622 |
+
else: # FF
|
| 623 |
+
axacc_train.plot(iters, train_accuracies, 'k-', alpha=0.7, label='Accuracy') # Simple line
|
| 624 |
+
axacc_test.plot(iters, test_accuracies, 'k-', alpha=0.7, label='Accuracy')
|
| 625 |
+
|
| 626 |
+
axacc_train.set_title('Train Accuracy')
|
| 627 |
+
axacc_test.set_title('Test Accuracy')
|
| 628 |
+
axacc_train.legend(loc='lower right')
|
| 629 |
+
axacc_test.legend(loc='lower right')
|
| 630 |
+
axacc_train.set_xlim([0, args.training_iterations])
|
| 631 |
+
axacc_test.set_xlim([0, args.training_iterations])
|
| 632 |
+
if args.dataset=='cifar10':
|
| 633 |
+
axacc_train.set_ylim([0.75, 1])
|
| 634 |
+
axacc_test.set_ylim([0.75, 1])
|
| 635 |
+
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
figacc.tight_layout()
|
| 639 |
+
figacc.savefig(f'{args.log_dir}/accuracies.png', dpi=150)
|
| 640 |
+
plt.close(figacc)
|
| 641 |
+
|
| 642 |
+
figloss = plt.figure(figsize=(10, 5))
|
| 643 |
+
axloss = figloss.add_subplot(111)
|
| 644 |
+
axloss.plot(iters, train_losses, 'b-', linewidth=1, alpha=0.8, label=f'Train: {train_losses[-1]:.4f}')
|
| 645 |
+
axloss.plot(iters, test_losses, 'r-', linewidth=1, alpha=0.8, label=f'Test: {test_losses[-1]:.4f}')
|
| 646 |
+
axloss.legend(loc='upper right')
|
| 647 |
+
axloss.set_xlim([0, args.training_iterations])
|
| 648 |
+
axloss.set_ylim(bottom=0)
|
| 649 |
+
|
| 650 |
+
figloss.tight_layout()
|
| 651 |
+
figloss.savefig(f'{args.log_dir}/losses.png', dpi=150)
|
| 652 |
+
plt.close(figloss)
|
| 653 |
+
|
| 654 |
+
# Conditional Visualization (Only for CTM/LSTM)
|
| 655 |
+
if args.model in ['ctm', 'lstm']:
|
| 656 |
+
try: # For safety
|
| 657 |
+
inputs_viz, targets_viz = next(iter(testloader)) # Get a fresh batch
|
| 658 |
+
inputs_viz = inputs_viz.to(device)
|
| 659 |
+
targets_viz = targets_viz.to(device)
|
| 660 |
+
|
| 661 |
+
pbar.set_description('Tracking: Processing test data for viz')
|
| 662 |
+
predictions_viz, certainties_viz, _, pre_activations_viz, post_activations_viz, attention_tracking_viz = model(inputs_viz, track=True)
|
| 663 |
+
|
| 664 |
+
att_shape = (model.kv_features.shape[2], model.kv_features.shape[3])
|
| 665 |
+
attention_tracking_viz = attention_tracking_viz.reshape(
|
| 666 |
+
attention_tracking_viz.shape[0],
|
| 667 |
+
attention_tracking_viz.shape[1], -1, att_shape[0], att_shape[1])
|
| 668 |
+
|
| 669 |
+
pbar.set_description('Tracking: Neural dynamics plot')
|
| 670 |
+
plot_neural_dynamics(post_activations_viz, 100, args.log_dir, axis_snap=True)
|
| 671 |
+
|
| 672 |
+
imgi = 0 # Visualize the first image in the batch
|
| 673 |
+
img_to_gif = np.moveaxis(np.clip(inputs_viz[imgi].detach().cpu().numpy()*np.array(dataset_std).reshape(len(dataset_std), 1, 1) + np.array(dataset_mean).reshape(len(dataset_mean), 1, 1), 0, 1), 0, -1)
|
| 674 |
+
|
| 675 |
+
pbar.set_description('Tracking: Producing attention gif')
|
| 676 |
+
make_classification_gif(img_to_gif,
|
| 677 |
+
targets_viz[imgi].item(),
|
| 678 |
+
predictions_viz[imgi].detach().cpu().numpy(),
|
| 679 |
+
certainties_viz[imgi].detach().cpu().numpy(),
|
| 680 |
+
post_activations_viz[:,imgi],
|
| 681 |
+
attention_tracking_viz[:,imgi],
|
| 682 |
+
class_labels,
|
| 683 |
+
f'{args.log_dir}/{imgi}_attention.gif',
|
| 684 |
+
)
|
| 685 |
+
del predictions_viz, certainties_viz, pre_activations_viz, post_activations_viz, attention_tracking_viz
|
| 686 |
+
except Exception as e:
|
| 687 |
+
print(f"Visualization failed for model {args.model}: {e}")
|
| 688 |
+
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
gc.collect()
|
| 692 |
+
if torch.cuda.is_available():
|
| 693 |
+
torch.cuda.empty_cache()
|
| 694 |
+
model.train() # Switch back to train mode
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
# Save model checkpoint (conditional metrics)
|
| 698 |
+
if (bi % args.save_every == 0 or bi == args.training_iterations - 1) and bi != start_iter:
|
| 699 |
+
pbar.set_description('Saving model checkpoint...')
|
| 700 |
+
checkpoint_data = {
|
| 701 |
+
'model_state_dict': model.state_dict(),
|
| 702 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
| 703 |
+
'scheduler_state_dict': scheduler.state_dict(),
|
| 704 |
+
'scaler_state_dict': scaler.state_dict(),
|
| 705 |
+
'iteration': bi,
|
| 706 |
+
# Always save these
|
| 707 |
+
'train_losses': train_losses,
|
| 708 |
+
'test_losses': test_losses,
|
| 709 |
+
'train_accuracies': train_accuracies, # This is list of scalars for FF, list of arrays for CTM/LSTM
|
| 710 |
+
'test_accuracies': test_accuracies, # This is list of scalars for FF, list of arrays for CTM/LSTM
|
| 711 |
+
'iters': iters,
|
| 712 |
+
'args': args, # Save args used for this run
|
| 713 |
+
# RNG states
|
| 714 |
+
'torch_rng_state': torch.get_rng_state(),
|
| 715 |
+
'numpy_rng_state': np.random.get_state(),
|
| 716 |
+
'random_rng_state': random.getstate(),
|
| 717 |
+
}
|
| 718 |
+
# Conditionally add metrics specific to CTM/LSTM
|
| 719 |
+
if args.model in ['ctm', 'lstm']:
|
| 720 |
+
checkpoint_data['train_accuracies_most_certain'] = train_accuracies_most_certain
|
| 721 |
+
checkpoint_data['test_accuracies_most_certain'] = test_accuracies_most_certain
|
| 722 |
+
|
| 723 |
+
torch.save(checkpoint_data, f'{args.log_dir}/checkpoint.pt')
|
| 724 |
+
|
| 725 |
+
pbar.update(1)
|
utils/losses.py
CHANGED
|
@@ -169,6 +169,57 @@ def parity_loss(predictions, certainties, targets, use_most_certain=True):
|
|
| 169 |
return loss, loss_index_2
|
| 170 |
|
| 171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
def qamnist_loss(predictions, certainties, targets, use_most_certain=True):
|
| 173 |
"""
|
| 174 |
Computes the qamnist loss over the last num_answer_steps steps.
|
|
|
|
| 169 |
return loss, loss_index_2
|
| 170 |
|
| 171 |
|
| 172 |
+
class EnergyContrastiveLoss(nn.Module):
|
| 173 |
+
def __init__(self, margin=10.0, energy_scale=0.1):
|
| 174 |
+
super().__init__()
|
| 175 |
+
self.margin = margin
|
| 176 |
+
self.energy_scale = energy_scale
|
| 177 |
+
self.ce_loss = nn.CrossEntropyLoss(reduction='none')
|
| 178 |
+
|
| 179 |
+
def forward(self, logits_history, energy_history, targets):
|
| 180 |
+
"""
|
| 181 |
+
logits_history: [B, Class, T]
|
| 182 |
+
energy_history: [B, 1, T]
|
| 183 |
+
targets: [B]
|
| 184 |
+
"""
|
| 185 |
+
B, C, T = logits_history.shape
|
| 186 |
+
|
| 187 |
+
# Flatten for easy computation
|
| 188 |
+
logits_flat = logits_history.permute(0, 2, 1).reshape(B * T, C)
|
| 189 |
+
energy_flat = energy_history.permute(0, 2, 1).reshape(B * T)
|
| 190 |
+
targets_expanded = targets.unsqueeze(1).repeat(1, T).reshape(B * T)
|
| 191 |
+
|
| 192 |
+
# 1. Standard Classification Loss (Cross Entropy)
|
| 193 |
+
ce_vals = self.ce_loss(logits_flat, targets_expanded)
|
| 194 |
+
|
| 195 |
+
# 2. Determine "Correctness" for Contrastive Divergence
|
| 196 |
+
# We treat a step as "positive" if the prediction matches the target
|
| 197 |
+
predictions = logits_flat.argmax(dim=1)
|
| 198 |
+
is_correct = (predictions == targets_expanded).float() # 1.0 if correct, 0.0 if wrong
|
| 199 |
+
|
| 200 |
+
# 3. Energy Loss Logic
|
| 201 |
+
# If Correct: Minimize Energy (Pull down to 0)
|
| 202 |
+
# If Incorrect: Maximize Energy (Push up to margin)
|
| 203 |
+
|
| 204 |
+
# L_pos = ||E(x)||^2 (Push correct states to 0 energy)
|
| 205 |
+
loss_pos = energy_flat ** 2
|
| 206 |
+
|
| 207 |
+
# L_neg = max(0, m - E(x))^2 (Push incorrect states above margin m)
|
| 208 |
+
loss_neg = F.relu(self.margin - energy_flat) ** 2
|
| 209 |
+
|
| 210 |
+
# Combine: correct samples use loss_pos, incorrect use loss_neg
|
| 211 |
+
energy_objective = (is_correct * loss_pos) + ((1 - is_correct) * loss_neg)
|
| 212 |
+
|
| 213 |
+
# Total Loss
|
| 214 |
+
total_loss = ce_vals.mean() + (self.energy_scale * energy_objective.mean())
|
| 215 |
+
|
| 216 |
+
return total_loss, {
|
| 217 |
+
"ce_loss": ce_vals.mean().item(),
|
| 218 |
+
"energy_loss": energy_objective.mean().item(),
|
| 219 |
+
"avg_energy": energy_flat.mean().item()
|
| 220 |
+
}
|
| 221 |
+
|
| 222 |
+
|
| 223 |
def qamnist_loss(predictions, certainties, targets, use_most_certain=True):
|
| 224 |
"""
|
| 225 |
Computes the qamnist loss over the last num_answer_steps steps.
|