Ciaran Regan
commited on
Commit
·
f3f0e2d
1
Parent(s):
7ae2b6b
Add Hugging Face Support (#23)
Browse files* Make CTM hf compatible
* Add notebook to demo HF usage
* Add changes to all notebooks for easier local runs.
- .gitignore +3 -0
- examples/01_mnist.ipynb +4 -4
- examples/02_inference.ipynb +0 -0
- examples/03_mazes.ipynb +26 -4
- examples/04_parity.ipynb +28 -6
- examples/05_huggingface.ipynb +0 -0
- models/ctm.py +50 -1
- requirements.txt +3 -1
- tasks/parity/plotting.py +2 -1
.gitignore
CHANGED
|
@@ -19,4 +19,7 @@ examples/*
|
|
| 19 |
!examples/02_inference.ipynb
|
| 20 |
!examples/03_mazes.ipynb
|
| 21 |
!examples/04_parity.ipynb
|
|
|
|
|
|
|
| 22 |
checkpoints
|
|
|
|
|
|
| 19 |
!examples/02_inference.ipynb
|
| 20 |
!examples/03_mazes.ipynb
|
| 21 |
!examples/04_parity.ipynb
|
| 22 |
+
!examples/05_huggingface.ipynb
|
| 23 |
+
!examples/goldfish.jpg
|
| 24 |
checkpoints
|
| 25 |
+
utils/hugging_face/
|
examples/01_mnist.ipynb
CHANGED
|
@@ -749,7 +749,7 @@
|
|
| 749 |
},
|
| 750 |
{
|
| 751 |
"cell_type": "code",
|
| 752 |
-
"execution_count":
|
| 753 |
"id": "b3fbae96",
|
| 754 |
"metadata": {},
|
| 755 |
"outputs": [],
|
|
@@ -789,7 +789,7 @@
|
|
| 789 |
" [['certainty'] * 8] + \\\n",
|
| 790 |
" [[f'trace_{ti}'] * 8 for ti in range(n_neurons_to_visualise)]\n",
|
| 791 |
"\n",
|
| 792 |
-
" for stepi in range(n_steps):\n",
|
| 793 |
" fig_gif, axes_gif = plt.subplot_mosaic(mosaic=mosaic, figsize=(31*figscale*8/4, 76*figscale))\n",
|
| 794 |
" probs = softmax(these_predictions[:, stepi])\n",
|
| 795 |
" colors = [('g' if i == this_target else 'b') for i in range(len(probs))]\n",
|
|
@@ -940,7 +940,7 @@
|
|
| 940 |
],
|
| 941 |
"metadata": {
|
| 942 |
"kernelspec": {
|
| 943 |
-
"display_name": "
|
| 944 |
"language": "python",
|
| 945 |
"name": "python3"
|
| 946 |
},
|
|
@@ -954,7 +954,7 @@
|
|
| 954 |
"name": "python",
|
| 955 |
"nbconvert_exporter": "python",
|
| 956 |
"pygments_lexer": "ipython3",
|
| 957 |
-
"version": "3.12.
|
| 958 |
}
|
| 959 |
},
|
| 960 |
"nbformat": 4,
|
|
|
|
| 749 |
},
|
| 750 |
{
|
| 751 |
"cell_type": "code",
|
| 752 |
+
"execution_count": null,
|
| 753 |
"id": "b3fbae96",
|
| 754 |
"metadata": {},
|
| 755 |
"outputs": [],
|
|
|
|
| 789 |
" [['certainty'] * 8] + \\\n",
|
| 790 |
" [[f'trace_{ti}'] * 8 for ti in range(n_neurons_to_visualise)]\n",
|
| 791 |
"\n",
|
| 792 |
+
" for stepi in tqdm(range(n_steps), desc=\"Processing steps\", unit=\"step\"):\n",
|
| 793 |
" fig_gif, axes_gif = plt.subplot_mosaic(mosaic=mosaic, figsize=(31*figscale*8/4, 76*figscale))\n",
|
| 794 |
" probs = softmax(these_predictions[:, stepi])\n",
|
| 795 |
" colors = [('g' if i == this_target else 'b') for i in range(len(probs))]\n",
|
|
|
|
| 940 |
],
|
| 941 |
"metadata": {
|
| 942 |
"kernelspec": {
|
| 943 |
+
"display_name": "Python 3",
|
| 944 |
"language": "python",
|
| 945 |
"name": "python3"
|
| 946 |
},
|
|
|
|
| 954 |
"name": "python",
|
| 955 |
"nbconvert_exporter": "python",
|
| 956 |
"pygments_lexer": "ipython3",
|
| 957 |
+
"version": "3.12.10"
|
| 958 |
}
|
| 959 |
},
|
| 960 |
"nbformat": 4,
|
examples/02_inference.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
examples/03_mazes.ipynb
CHANGED
|
@@ -67,6 +67,31 @@
|
|
| 67 |
"In addition to installing some dependencies, we also clone the CTM repo (assuming this tutorial is being ran in Colab), so that we can access the base CTM model."
|
| 68 |
]
|
| 69 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
{
|
| 71 |
"cell_type": "code",
|
| 72 |
"execution_count": null,
|
|
@@ -108,7 +133,7 @@
|
|
| 108 |
},
|
| 109 |
{
|
| 110 |
"cell_type": "code",
|
| 111 |
-
"execution_count":
|
| 112 |
"id": "24ffe416",
|
| 113 |
"metadata": {},
|
| 114 |
"outputs": [
|
|
@@ -122,9 +147,6 @@
|
|
| 122 |
}
|
| 123 |
],
|
| 124 |
"source": [
|
| 125 |
-
"import sys\n",
|
| 126 |
-
"sys.path.append(\"./continuous-thought-machines\")\n",
|
| 127 |
-
"\n",
|
| 128 |
"import os\n",
|
| 129 |
"import torch\n",
|
| 130 |
"import torch.nn as nn\n",
|
|
|
|
| 67 |
"In addition to installing some dependencies, we also clone the CTM repo (assuming this tutorial is being ran in Colab), so that we can access the base CTM model."
|
| 68 |
]
|
| 69 |
},
|
| 70 |
+
{
|
| 71 |
+
"cell_type": "code",
|
| 72 |
+
"execution_count": null,
|
| 73 |
+
"id": "537dd917",
|
| 74 |
+
"metadata": {},
|
| 75 |
+
"outputs": [],
|
| 76 |
+
"source": [
|
| 77 |
+
"USE_COLAB = False"
|
| 78 |
+
]
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
"cell_type": "code",
|
| 82 |
+
"execution_count": null,
|
| 83 |
+
"metadata": {},
|
| 84 |
+
"outputs": [],
|
| 85 |
+
"source": [
|
| 86 |
+
"import sys\n",
|
| 87 |
+
"\n",
|
| 88 |
+
"if USE_COLAB:\n",
|
| 89 |
+
" !git clone https://github.com/SakanaAI/continuous-thought-machines.git\n",
|
| 90 |
+
" sys.path.append(\"./continuous-thought-machines\")\n",
|
| 91 |
+
"else:\n",
|
| 92 |
+
" sys.path.append(\"..\")"
|
| 93 |
+
]
|
| 94 |
+
},
|
| 95 |
{
|
| 96 |
"cell_type": "code",
|
| 97 |
"execution_count": null,
|
|
|
|
| 133 |
},
|
| 134 |
{
|
| 135 |
"cell_type": "code",
|
| 136 |
+
"execution_count": null,
|
| 137 |
"id": "24ffe416",
|
| 138 |
"metadata": {},
|
| 139 |
"outputs": [
|
|
|
|
| 147 |
}
|
| 148 |
],
|
| 149 |
"source": [
|
|
|
|
|
|
|
|
|
|
| 150 |
"import os\n",
|
| 151 |
"import torch\n",
|
| 152 |
"import torch.nn as nn\n",
|
examples/04_parity.ipynb
CHANGED
|
@@ -52,6 +52,32 @@
|
|
| 52 |
"In addition to installing some dependencies, we also clone the CTM repo (assuming this tutorial is being run in Colab), so that we can access the base CTM model."
|
| 53 |
]
|
| 54 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
{
|
| 56 |
"cell_type": "code",
|
| 57 |
"execution_count": null,
|
|
@@ -60,8 +86,7 @@
|
|
| 60 |
"outputs": [],
|
| 61 |
"source": [
|
| 62 |
"!pip install gdown\n",
|
| 63 |
-
"!pip install mediapy
|
| 64 |
-
"!git clone https://github.com/SakanaAI/continuous-thought-machines.git\n"
|
| 65 |
]
|
| 66 |
},
|
| 67 |
{
|
|
@@ -74,14 +99,11 @@
|
|
| 74 |
},
|
| 75 |
{
|
| 76 |
"cell_type": "code",
|
| 77 |
-
"execution_count":
|
| 78 |
"id": "24ffe416",
|
| 79 |
"metadata": {},
|
| 80 |
"outputs": [],
|
| 81 |
"source": [
|
| 82 |
-
"import sys\n",
|
| 83 |
-
"sys.path.append(\"./continuous-thought-machines\")\n",
|
| 84 |
-
"\n",
|
| 85 |
"import os\n",
|
| 86 |
"import torch\n",
|
| 87 |
"import torch.nn as nn\n",
|
|
|
|
| 52 |
"In addition to installing some dependencies, we also clone the CTM repo (assuming this tutorial is being run in Colab), so that we can access the base CTM model."
|
| 53 |
]
|
| 54 |
},
|
| 55 |
+
{
|
| 56 |
+
"cell_type": "code",
|
| 57 |
+
"execution_count": null,
|
| 58 |
+
"id": "5c06d1e5",
|
| 59 |
+
"metadata": {},
|
| 60 |
+
"outputs": [],
|
| 61 |
+
"source": [
|
| 62 |
+
"USE_COLAB = False"
|
| 63 |
+
]
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"cell_type": "code",
|
| 67 |
+
"execution_count": null,
|
| 68 |
+
"id": "30ab5f0d",
|
| 69 |
+
"metadata": {},
|
| 70 |
+
"outputs": [],
|
| 71 |
+
"source": [
|
| 72 |
+
"import sys\n",
|
| 73 |
+
"\n",
|
| 74 |
+
"if USE_COLAB:\n",
|
| 75 |
+
" !git clone https://github.com/SakanaAI/continuous-thought-machines.git\n",
|
| 76 |
+
" sys.path.append(\"./continuous-thought-machines\")\n",
|
| 77 |
+
"else:\n",
|
| 78 |
+
" sys.path.append(\"..\")"
|
| 79 |
+
]
|
| 80 |
+
},
|
| 81 |
{
|
| 82 |
"cell_type": "code",
|
| 83 |
"execution_count": null,
|
|
|
|
| 86 |
"outputs": [],
|
| 87 |
"source": [
|
| 88 |
"!pip install gdown\n",
|
| 89 |
+
"!pip install mediapy"
|
|
|
|
| 90 |
]
|
| 91 |
},
|
| 92 |
{
|
|
|
|
| 99 |
},
|
| 100 |
{
|
| 101 |
"cell_type": "code",
|
| 102 |
+
"execution_count": null,
|
| 103 |
"id": "24ffe416",
|
| 104 |
"metadata": {},
|
| 105 |
"outputs": [],
|
| 106 |
"source": [
|
|
|
|
|
|
|
|
|
|
| 107 |
"import os\n",
|
| 108 |
"import torch\n",
|
| 109 |
"import torch.nn as nn\n",
|
examples/05_huggingface.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/ctm.py
CHANGED
|
@@ -2,6 +2,7 @@ import torch.nn as nn
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
import math
|
|
|
|
| 5 |
|
| 6 |
from models.modules import ParityBackbone, SynapseUNET, Squeeze, SuperLinear, LearnableFourierPositionalEncoding, MultiLearnableFourierPositionalEncoding, CustomRotationalEmbedding, CustomRotationalEmbedding1D, ShallowWide
|
| 7 |
from models.resnet import prepare_resnet_backbone
|
|
@@ -13,7 +14,7 @@ from models.constants import (
|
|
| 13 |
VALID_POSITIONAL_EMBEDDING_TYPES
|
| 14 |
)
|
| 15 |
|
| 16 |
-
class ContinuousThoughtMachine(nn.Module):
|
| 17 |
"""
|
| 18 |
Continuous Thought Machine (CTM).
|
| 19 |
|
|
@@ -149,6 +150,53 @@ class ContinuousThoughtMachine(nn.Module):
|
|
| 149 |
# --- Output Procesing ---
|
| 150 |
self.output_projector = nn.Sequential(nn.LazyLinear(self.out_dims))
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
# --- Core CTM Methods ---
|
| 153 |
|
| 154 |
def compute_synchronisation(self, activated_state, decay_alpha, decay_beta, r, synch_type):
|
|
@@ -553,3 +601,4 @@ class ContinuousThoughtMachine(nn.Module):
|
|
| 553 |
if track:
|
| 554 |
return predictions, certainties, (np.array(synch_out_tracking), np.array(synch_action_tracking)), np.array(pre_activations_tracking), np.array(post_activations_tracking), np.array(attention_tracking)
|
| 555 |
return predictions, certainties, synchronisation_out
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
import math
|
| 5 |
+
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
|
| 6 |
|
| 7 |
from models.modules import ParityBackbone, SynapseUNET, Squeeze, SuperLinear, LearnableFourierPositionalEncoding, MultiLearnableFourierPositionalEncoding, CustomRotationalEmbedding, CustomRotationalEmbedding1D, ShallowWide
|
| 8 |
from models.resnet import prepare_resnet_backbone
|
|
|
|
| 14 |
VALID_POSITIONAL_EMBEDDING_TYPES
|
| 15 |
)
|
| 16 |
|
| 17 |
+
class ContinuousThoughtMachine(nn.Module, PyTorchModelHubMixin):
|
| 18 |
"""
|
| 19 |
Continuous Thought Machine (CTM).
|
| 20 |
|
|
|
|
| 150 |
# --- Output Procesing ---
|
| 151 |
self.output_projector = nn.Sequential(nn.LazyLinear(self.out_dims))
|
| 152 |
|
| 153 |
+
@classmethod
|
| 154 |
+
def _from_pretrained(
|
| 155 |
+
cls,
|
| 156 |
+
*,
|
| 157 |
+
model_id: str,
|
| 158 |
+
revision=None,
|
| 159 |
+
cache_dir=None,
|
| 160 |
+
force_download=False,
|
| 161 |
+
proxies=None,
|
| 162 |
+
resume_download=None,
|
| 163 |
+
local_files_only=False,
|
| 164 |
+
token=None,
|
| 165 |
+
map_location="cpu",
|
| 166 |
+
strict=False,
|
| 167 |
+
**model_kwargs,
|
| 168 |
+
):
|
| 169 |
+
"""Override to handle lazy weights initialization."""
|
| 170 |
+
model = cls(**model_kwargs).to(map_location)
|
| 171 |
+
|
| 172 |
+
# The CTM contains Lazy modules, so we must run a dummy forward pass to initialize them
|
| 173 |
+
if "imagenet" in model_id:
|
| 174 |
+
dummy_input = torch.randn(1, 3, 224, 224, device=map_location)
|
| 175 |
+
elif "maze-large" in model_id:
|
| 176 |
+
dummy_input = torch.randn(1, 3, 99, 99, device=map_location)
|
| 177 |
+
else:
|
| 178 |
+
raise NotImplementedError
|
| 179 |
+
|
| 180 |
+
with torch.no_grad():
|
| 181 |
+
_ = model(dummy_input)
|
| 182 |
+
|
| 183 |
+
model_file = hf_hub_download(
|
| 184 |
+
repo_id=model_id,
|
| 185 |
+
filename="model.safetensors",
|
| 186 |
+
revision=revision,
|
| 187 |
+
cache_dir=cache_dir,
|
| 188 |
+
force_download=force_download,
|
| 189 |
+
proxies=proxies,
|
| 190 |
+
resume_download=resume_download,
|
| 191 |
+
token=token,
|
| 192 |
+
local_files_only=local_files_only,
|
| 193 |
+
)
|
| 194 |
+
from safetensors.torch import load_model as load_model_as_safetensor
|
| 195 |
+
load_model_as_safetensor(model, model_file, strict=strict, device=map_location)
|
| 196 |
+
|
| 197 |
+
model.eval()
|
| 198 |
+
return model
|
| 199 |
+
|
| 200 |
# --- Core CTM Methods ---
|
| 201 |
|
| 202 |
def compute_synchronisation(self, activated_state, decay_alpha, decay_beta, r, synch_type):
|
|
|
|
| 601 |
if track:
|
| 602 |
return predictions, certainties, (np.array(synch_out_tracking), np.array(synch_action_tracking)), np.array(pre_activations_tracking), np.array(post_activations_tracking), np.array(attention_tracking)
|
| 603 |
return predictions, certainties, synchronisation_out
|
| 604 |
+
|
requirements.txt
CHANGED
|
@@ -12,4 +12,6 @@ python-dotenv
|
|
| 12 |
gymnasium
|
| 13 |
minigrid
|
| 14 |
datasets
|
| 15 |
-
autoclip
|
|
|
|
|
|
|
|
|
| 12 |
gymnasium
|
| 13 |
minigrid
|
| 14 |
datasets
|
| 15 |
+
autoclip
|
| 16 |
+
huggingface_hub
|
| 17 |
+
safetensors
|
tasks/parity/plotting.py
CHANGED
|
@@ -13,6 +13,7 @@ import imageio.v2 as imageio
|
|
| 13 |
from PIL import Image
|
| 14 |
import math
|
| 15 |
import re
|
|
|
|
| 16 |
sns.set_style('darkgrid')
|
| 17 |
mpl.use('Agg')
|
| 18 |
|
|
@@ -43,7 +44,7 @@ def make_parity_gif(predictions, certainties, targets, pre_activations, post_act
|
|
| 43 |
[['certainty', 'certainty', 'certainty', 'certainty', 'certainty', 'certainty', 'certainty', 'certainty']] + \
|
| 44 |
[[f'trace_{ti}', f'trace_{ti}', f'trace_{ti}', f'trace_{ti}', f'trace_{ti}', f'trace_{ti}', f'trace_{ti}', f'trace_{ti}'] for ti in range(n_neurons_to_visualise)]
|
| 45 |
|
| 46 |
-
for stepi in range(n_steps):
|
| 47 |
fig_gif, axes_gif = plt.subplot_mosaic(mosaic=mosaic, figsize=(31*figscale*8/4, 76*figscale))
|
| 48 |
|
| 49 |
# Plot predictions
|
|
|
|
| 13 |
from PIL import Image
|
| 14 |
import math
|
| 15 |
import re
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
sns.set_style('darkgrid')
|
| 18 |
mpl.use('Agg')
|
| 19 |
|
|
|
|
| 44 |
[['certainty', 'certainty', 'certainty', 'certainty', 'certainty', 'certainty', 'certainty', 'certainty']] + \
|
| 45 |
[[f'trace_{ti}', f'trace_{ti}', f'trace_{ti}', f'trace_{ti}', f'trace_{ti}', f'trace_{ti}', f'trace_{ti}', f'trace_{ti}'] for ti in range(n_neurons_to_visualise)]
|
| 46 |
|
| 47 |
+
for stepi in tqdm(range(n_steps), desc="Processing steps", unit="step"):
|
| 48 |
fig_gif, axes_gif = plt.subplot_mosaic(mosaic=mosaic, figsize=(31*figscale*8/4, 76*figscale))
|
| 49 |
|
| 50 |
# Plot predictions
|