import torch import torch.nn as nn import os from models.modules import Identity __all__ = [ "ResNet", "resnet18", "resnet34", "resnet50", "resnet101", "resnet152", ] def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation, ) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__( self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None, ): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError("BasicBlock only supports groups=1 and base_width=64") if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__( self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None, ): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.0)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity # activation = None # activation = out.detach().cpu().numpy() out = self.relu(out) # return out, activation return out class ResNet(nn.Module): def __init__( self, in_channels, feature_scales, stride, block, layers, num_classes=10, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None, do_initial_max_pool=True, ): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError( "replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation) ) self.groups = groups self.base_width = width_per_group # NOTE: Important! # This has changed from a kernel size of 7 (padding=3) to a kernel of 3 (padding=1) # The reason for this was to limit the receptive field to constrain models to # "Looking around" to gather information. self.conv1 = nn.Conv2d( in_channels, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False ) if in_channels in [1, 3] else nn.LazyConv2d( self.inplanes, kernel_size=3, stride=1, padding=1, bias=False ) # END self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) if do_initial_max_pool else Identity() self.layer1 = self._make_layer(block, 64, layers[0]) self.feature_scales = feature_scales if 2 in feature_scales: self.layer2 = self._make_layer( block, 128, layers[1], stride=stride, dilate=replace_stride_with_dilation[0] ) if 3 in feature_scales: self.layer3 = self._make_layer( block, 256, layers[2], stride=stride, dilate=replace_stride_with_dilation[1] ) if 4 in feature_scales: self.layer4 = self._make_layer( block, 512, layers[3], stride=stride, dilate=replace_stride_with_dilation[2] ) # NOTE: Commented this out as it is not used anymore for this work, kept it for reference # self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # self.fc = nn.Linear(512 * block.expansion, num_classes) # for m in self.modules(): # if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") # elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): # nn.init.constant_(m.weight, 1) # nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append( block( self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer, ) ) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block( self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer, ) ) return nn.Sequential(*layers) def forward(self, x): activations = [] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) # if return_activations: activations.append(torch.clone(x)) x = self.layer1(x) if 2 in self.feature_scales: x = self.layer2(x) if 3 in self.feature_scales: x = self.layer3(x) if 4 in self.feature_scales: x = self.layer4(x) return x def _resnet(in_channels, feature_scales, stride, arch, block, layers, pretrained, progress, device, do_initial_max_pool, **kwargs): model = ResNet(in_channels, feature_scales, stride, block, layers, do_initial_max_pool=do_initial_max_pool, **kwargs) if pretrained: assert in_channels==3 script_dir = os.path.dirname(__file__) state_dict = torch.load( script_dir + '/state_dicts/' + arch + ".pt", map_location=device ) model.load_state_dict(state_dict, strict=False) return model def resnet18(in_channels, feature_scales, stride=2, pretrained=False, progress=True, device="cpu", do_initial_max_pool=True, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet(in_channels, feature_scales, stride, "resnet18", BasicBlock, [2, 2, 2, 2], pretrained, progress, device, do_initial_max_pool, **kwargs ) def resnet34(in_channels, feature_scales, stride=2, pretrained=False, progress=True, device="cpu", do_initial_max_pool=True, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet(in_channels, feature_scales, stride, "resnet34", BasicBlock, [3, 4, 6, 3], pretrained, progress, device, do_initial_max_pool, **kwargs ) def resnet50(in_channels, feature_scales, stride=2, pretrained=False, progress=True, device="cpu", do_initial_max_pool=True, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet(in_channels, feature_scales, stride, "resnet50", Bottleneck, [3, 4, 6, 3], pretrained, progress, device, do_initial_max_pool, **kwargs ) def resnet101(in_channels, feature_scales, stride=2, pretrained=False, progress=True, device="cpu", do_initial_max_pool=True, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet(in_channels, feature_scales, stride, "resnet101", Bottleneck, [3, 4, 23, 3], pretrained, progress, device, do_initial_max_pool, **kwargs ) def resnet152(in_channels, feature_scales, stride=2, pretrained=False, progress=True, device="cpu", do_initial_max_pool=True, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet(in_channels, feature_scales, stride, "resnet152", Bottleneck, [3, 4, 36, 3], pretrained, progress, device, do_initial_max_pool, **kwargs ) def prepare_resnet_backbone(backbone_type): resnet_family = resnet18 # Default if '34' in backbone_type: resnet_family = resnet34 if '50' in backbone_type: resnet_family = resnet50 if '101' in backbone_type: resnet_family = resnet101 if '152' in backbone_type: resnet_family = resnet152 # Determine which ResNet blocks to keep block_num_str = backbone_type.split('-')[-1] hyper_blocks_to_keep = list(range(1, int(block_num_str) + 1)) if block_num_str.isdigit() else [1, 2, 3, 4] backbone = resnet_family( 3, hyper_blocks_to_keep, stride=2, pretrained=False, progress=True, device="cpu", do_initial_max_pool=True, ) return backbone