# Energy Halting Experiment Config # Model Architecture model: ctm d_model: 512 d_input: 128 heads: 4 iterations: 50 dropout: 0.0 backbone_type: resnet18-4 positional_embedding_type: none # CTM Specifics synapse_depth: 4 n_synch_out: 512 n_synch_action: 512 neuron_select_type: random-pairing n_random_pairing_self: 0 memory_length: 25 deep_memory: true memory_hidden_dims: 4 do_normalisation: false # Energy Head energy_head: enabled: true d_hidden: 64 # Training batch_size: 32 batch_size_test: 32 lr: 1.0e-3 training_iterations: 100001 warmup_steps: 5000 use_scheduler: true scheduler_type: cosine weight_decay: 0.0 gradient_clipping: -1 do_compile: false num_workers_train: 4 # Loss loss: type: energy_contrastive margin: 5.0 energy_scale: 0.5 # Inference inference: energy_threshold: 0.5 delta_threshold: 0.01 # Housekeeping dataset: cifar10 data_root: data/ save_every: 1000 track_every: 1000 seed: 412 log_dir: logs/energy_experiment device: [-1] # Auto-detect