Spaces:
Sleeping
Sleeping
Commit
·
dd85fb6
1
Parent(s):
0e49d67
1st version
Browse files- .gitignore +2 -0
- README.md +60 -0
- app.py +15 -0
- backend/__init__.py +2 -0
- backend/py/__init__.py +2 -0
- backend/py/app/__init__.py +2 -0
- backend/py/app/api/__init__.py +2 -0
- backend/py/app/api/v1/__init__.py +2 -0
- backend/py/app/api/v1/detect.py +262 -0
- backend/py/app/gradio_demo/__init__.py +2 -0
- backend/py/app/gradio_demo/ui.py +168 -0
- backend/py/app/inference/__init__.py +2 -0
- backend/py/app/inference/classical.py +87 -0
- backend/py/app/inference/common.py +15 -0
- backend/py/app/inference/dl.py +171 -0
- backend/py/app/main.py +36 -0
- backend/py/app/services/__init__.py +2 -0
- backend/py/app/services/runtime_adapter.py +148 -0
- backend/py/app/utils/__init__.py +2 -0
- backend/py/app/utils/image_io.py +26 -0
- requirements.txt +6 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
| 2 |
+
models
|
README.md
CHANGED
|
@@ -12,3 +12,63 @@ short_description: Minimal feature-detection with Classical and Deep Learning
|
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 15 |
+
|
| 16 |
+
# FeatureLab Mini — Classic & DL Detectors
|
| 17 |
+
|
| 18 |
+
FeatureLab now exposes a production-friendly layout: FastAPI serves the detector runtime over HTTP/WebSocket while Gradio rides on top for internal demos.
|
| 19 |
+
|
| 20 |
+
## Runtime Overview
|
| 21 |
+
```
|
| 22 |
+
FastAPI (/v1/detect/*) <-- shared numpy/CV runtime --> Gradio UI (/)
|
| 23 |
+
```
|
| 24 |
+
- **Classical path**: Canny, Harris, Probabilistic Hough, contour-based ellipse fitting.
|
| 25 |
+
- **Deep path**: ONNX models (HED, SuperPoint, SOLD2, etc.) auto-loaded from `./models`.
|
| 26 |
+
- **Responses**: base64 PNG overlays, rich feature metadata, timings, model info.
|
| 27 |
+
|
| 28 |
+
## Run locally
|
| 29 |
+
```bash
|
| 30 |
+
python -m venv .venv && source .venv/bin/activate
|
| 31 |
+
pip install -r requirements.txt
|
| 32 |
+
python app.py # FastAPI + Gradio on http://localhost:7860
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
## HTTP API
|
| 36 |
+
- `POST /v1/detect/edges|corners|lines|ellipses`
|
| 37 |
+
- Body:
|
| 38 |
+
```json
|
| 39 |
+
{
|
| 40 |
+
"image": "<base64 png/jpeg>",
|
| 41 |
+
"params": { "canny_low": 50, "canny_high": 150, "...": "..." },
|
| 42 |
+
"mode": "classical|dl|both",
|
| 43 |
+
"compare": false,
|
| 44 |
+
"dl_model": "hed.onnx"
|
| 45 |
+
}
|
| 46 |
+
```
|
| 47 |
+
- Response:
|
| 48 |
+
```json
|
| 49 |
+
{
|
| 50 |
+
"overlay": "<png base64>",
|
| 51 |
+
"overlays": { "classical": "...", "dl": "..." },
|
| 52 |
+
"features": { "classical": {...}, "dl": {...} },
|
| 53 |
+
"timings": { "classical": 7.2, "dl": 18.5, "total": 25.7 },
|
| 54 |
+
"fps_estimate": 38.9,
|
| 55 |
+
"model": { "name": "opencv-classical", "version": "4.10.0" },
|
| 56 |
+
"models": { "classical": {...}, "dl": {...} }
|
| 57 |
+
}
|
| 58 |
+
```
|
| 59 |
+
- Multipart uploads: `POST /v1/detect/<detector>/upload` with `file`, optional `params` (JSON string), `mode`, `compare`, `dl_model`.
|
| 60 |
+
|
| 61 |
+
## WebSocket API
|
| 62 |
+
- Connect to `/v1/detect/stream`.
|
| 63 |
+
- Send JSON payloads with the same shape as HTTP.
|
| 64 |
+
- Receive the detection response for each frame — suitable for webcam or live sources.
|
| 65 |
+
|
| 66 |
+
## Gradio Demo
|
| 67 |
+
- Still bundled for quick experiments (webcam capture, parameter sliders).
|
| 68 |
+
- Fully decoupled: the UI calls the same runtime, so React/Tauri front-ends can swap in later without touching detector code.
|
| 69 |
+
|
| 70 |
+
## Deploying
|
| 71 |
+
- Hugging Face Spaces (Gradio) still works — FastAPI runs inside the Space process.
|
| 72 |
+
- For container/desktop targets, run `uvicorn app:app` or embed the FastAPI router into your existing service.
|
| 73 |
+
|
| 74 |
+
GPU/Core ML acceleration (ONNX) is optional; drop models into `./models` to enable DL paths. Continuous upgrades toward Core ML / PyTorch backends can reuse the same API surface.
|
app.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Thin entrypoint for local runs.
|
| 3 |
+
Imports the FastAPI app from the backend package and runs it.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import uvicorn
|
| 8 |
+
|
| 9 |
+
from backend.py.app.main import app # noqa: F401
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
if __name__ == "__main__":
|
| 13 |
+
host = os.getenv("HOST", "127.0.0.1")
|
| 14 |
+
port = int(os.getenv("PORT", "7862"))
|
| 15 |
+
uvicorn.run("app:app", host=host, port=port, reload=False)
|
backend/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__all__ = []
|
| 2 |
+
|
backend/py/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__all__ = []
|
| 2 |
+
|
backend/py/app/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__all__ = []
|
| 2 |
+
|
backend/py/app/api/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__all__ = []
|
| 2 |
+
|
backend/py/app/api/v1/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__all__ = []
|
| 2 |
+
|
backend/py/app/api/v1/detect.py
ADDED
|
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from typing import Any, Dict, Optional
|
| 3 |
+
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
from fastapi import APIRouter, File, Form, HTTPException, UploadFile, WebSocket, WebSocketDisconnect
|
| 7 |
+
|
| 8 |
+
from ...models.schemas import DetectionParams, DetectionRequest, DetectionResponse
|
| 9 |
+
from ...services.runtime_adapter import DetectionResult, run_detection
|
| 10 |
+
from ...utils.image_io import decode_base64_image, encode_png_base64
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
router = APIRouter(prefix="/v1/detect", tags=["detection"])
|
| 14 |
+
|
| 15 |
+
DETECTOR_KEYS: Dict[str, str] = {
|
| 16 |
+
"edges": "Edges (Canny)",
|
| 17 |
+
"corners": "Corners (Harris)",
|
| 18 |
+
"lines": "Lines (Hough)",
|
| 19 |
+
"ellipses": "Ellipses (Contours + fitEllipse)",
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
ALLOWED_MODES = {"classical", "dl", "both"}
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def _detector_label(key: str) -> str:
|
| 26 |
+
if key not in DETECTOR_KEYS:
|
| 27 |
+
raise HTTPException(status_code=404, detail=f"Unknown detector '{key}'.")
|
| 28 |
+
return DETECTOR_KEYS[key]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def _resolve_mode(mode: str, compare: bool) -> str:
|
| 32 |
+
if compare:
|
| 33 |
+
return "both"
|
| 34 |
+
if mode not in ALLOWED_MODES:
|
| 35 |
+
return "classical"
|
| 36 |
+
return mode
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def _choose_primary(mode: str, overlays: Dict[str, str]) -> Optional[str]:
|
| 40 |
+
if mode == "dl" and "dl" in overlays:
|
| 41 |
+
return "dl"
|
| 42 |
+
if mode == "classical" and "classical" in overlays:
|
| 43 |
+
return "classical"
|
| 44 |
+
if mode == "both":
|
| 45 |
+
if "classical" in overlays:
|
| 46 |
+
return "classical"
|
| 47 |
+
if "dl" in overlays:
|
| 48 |
+
return "dl"
|
| 49 |
+
return next(iter(overlays.keys()), None)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def _format_result(result: DetectionResult, mode: str) -> DetectionResponse:
|
| 53 |
+
overlays_encoded: Dict[str, Optional[str]] = {}
|
| 54 |
+
for path, image in result.overlays.items():
|
| 55 |
+
if image is None:
|
| 56 |
+
overlays_encoded[path] = None
|
| 57 |
+
continue
|
| 58 |
+
overlays_encoded[path] = encode_png_base64(image)
|
| 59 |
+
|
| 60 |
+
primary = _choose_primary(mode, {k: v for k, v in overlays_encoded.items() if v})
|
| 61 |
+
model_info = result.models.get(primary or "classical", result.models.get("classical", {}))
|
| 62 |
+
|
| 63 |
+
return DetectionResponse(
|
| 64 |
+
overlay=overlays_encoded.get(primary) if primary else None,
|
| 65 |
+
overlays=overlays_encoded,
|
| 66 |
+
features=result.features,
|
| 67 |
+
timings=result.timings_ms,
|
| 68 |
+
fps_estimate=result.fps_estimate,
|
| 69 |
+
model=model_info,
|
| 70 |
+
models=result.models,
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def _json_params(params: Optional[DetectionParams]) -> Optional[Dict[str, Any]]:
|
| 75 |
+
if params is None:
|
| 76 |
+
return None
|
| 77 |
+
return params.dict(exclude_none=True)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
@router.post("/edges", response_model=DetectionResponse)
|
| 81 |
+
async def detect_edges(payload: DetectionRequest):
|
| 82 |
+
try:
|
| 83 |
+
image = decode_base64_image(payload.image)
|
| 84 |
+
except Exception as exc:
|
| 85 |
+
raise HTTPException(status_code=400, detail=f"Invalid image payload: {exc}")
|
| 86 |
+
runtime_mode = _resolve_mode(payload.mode, payload.compare)
|
| 87 |
+
result = run_detection(
|
| 88 |
+
image,
|
| 89 |
+
_detector_label("edges"),
|
| 90 |
+
params=_json_params(payload.params),
|
| 91 |
+
mode=runtime_mode,
|
| 92 |
+
dl_choice=payload.dl_model.strip() if payload.dl_model else None,
|
| 93 |
+
)
|
| 94 |
+
return _format_result(result, runtime_mode)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
@router.post("/corners", response_model=DetectionResponse)
|
| 98 |
+
async def detect_corners(payload: DetectionRequest):
|
| 99 |
+
try:
|
| 100 |
+
image = decode_base64_image(payload.image)
|
| 101 |
+
except Exception as exc:
|
| 102 |
+
raise HTTPException(status_code=400, detail=f"Invalid image payload: {exc}")
|
| 103 |
+
runtime_mode = _resolve_mode(payload.mode, payload.compare)
|
| 104 |
+
result = run_detection(
|
| 105 |
+
image,
|
| 106 |
+
_detector_label("corners"),
|
| 107 |
+
params=_json_params(payload.params),
|
| 108 |
+
mode=runtime_mode,
|
| 109 |
+
dl_choice=payload.dl_model.strip() if payload.dl_model else None,
|
| 110 |
+
)
|
| 111 |
+
return _format_result(result, runtime_mode)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
@router.post("/lines", response_model=DetectionResponse)
|
| 115 |
+
async def detect_lines(payload: DetectionRequest):
|
| 116 |
+
try:
|
| 117 |
+
image = decode_base64_image(payload.image)
|
| 118 |
+
except Exception as exc:
|
| 119 |
+
raise HTTPException(status_code=400, detail=f"Invalid image payload: {exc}")
|
| 120 |
+
runtime_mode = _resolve_mode(payload.mode, payload.compare)
|
| 121 |
+
result = run_detection(
|
| 122 |
+
image,
|
| 123 |
+
_detector_label("lines"),
|
| 124 |
+
params=_json_params(payload.params),
|
| 125 |
+
mode=runtime_mode,
|
| 126 |
+
dl_choice=payload.dl_model.strip() if payload.dl_model else None,
|
| 127 |
+
)
|
| 128 |
+
return _format_result(result, runtime_mode)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
@router.post("/ellipses", response_model=DetectionResponse)
|
| 132 |
+
async def detect_ellipses(payload: DetectionRequest):
|
| 133 |
+
try:
|
| 134 |
+
image = decode_base64_image(payload.image)
|
| 135 |
+
except Exception as exc:
|
| 136 |
+
raise HTTPException(status_code=400, detail=f"Invalid image payload: {exc}")
|
| 137 |
+
runtime_mode = _resolve_mode(payload.mode, payload.compare)
|
| 138 |
+
result = run_detection(
|
| 139 |
+
image,
|
| 140 |
+
_detector_label("ellipses"),
|
| 141 |
+
params=_json_params(payload.params),
|
| 142 |
+
mode=runtime_mode,
|
| 143 |
+
dl_choice=payload.dl_model.strip() if payload.dl_model else None,
|
| 144 |
+
)
|
| 145 |
+
return _format_result(result, runtime_mode)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
async def _handle_upload(
|
| 149 |
+
detector_key: str,
|
| 150 |
+
file: UploadFile,
|
| 151 |
+
params: Optional[str],
|
| 152 |
+
mode: str,
|
| 153 |
+
compare: bool,
|
| 154 |
+
dl_model: Optional[str],
|
| 155 |
+
) -> DetectionResponse:
|
| 156 |
+
content = await file.read()
|
| 157 |
+
array = np.frombuffer(content, dtype=np.uint8)
|
| 158 |
+
decoded = cv2.imdecode(array, cv2.IMREAD_COLOR)
|
| 159 |
+
if decoded is None:
|
| 160 |
+
raise HTTPException(status_code=400, detail="Unable to decode uploaded image.")
|
| 161 |
+
image = cv2.cvtColor(decoded, cv2.COLOR_BGR2RGB)
|
| 162 |
+
params_dict: Optional[Dict[str, Any]] = None
|
| 163 |
+
if params:
|
| 164 |
+
try:
|
| 165 |
+
params_dict = json.loads(params)
|
| 166 |
+
if not isinstance(params_dict, dict):
|
| 167 |
+
raise ValueError("params JSON must decode to an object.")
|
| 168 |
+
except ValueError as exc:
|
| 169 |
+
raise HTTPException(status_code=400, detail=f"Invalid params: {exc}")
|
| 170 |
+
runtime_mode = _resolve_mode(mode, compare)
|
| 171 |
+
result = run_detection(
|
| 172 |
+
image,
|
| 173 |
+
_detector_label(detector_key),
|
| 174 |
+
params=params_dict,
|
| 175 |
+
mode=runtime_mode,
|
| 176 |
+
dl_choice=dl_model.strip() if dl_model else None,
|
| 177 |
+
)
|
| 178 |
+
return _format_result(result, runtime_mode)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def _upload_endpoint(detector_key: str):
|
| 182 |
+
async def endpoint(
|
| 183 |
+
file: UploadFile = File(...),
|
| 184 |
+
params: Optional[str] = Form(None),
|
| 185 |
+
mode: str = Form("classical"),
|
| 186 |
+
compare: bool = Form(False),
|
| 187 |
+
dl_model: Optional[str] = Form(None),
|
| 188 |
+
):
|
| 189 |
+
return await _handle_upload(detector_key, file, params, mode, compare, dl_model)
|
| 190 |
+
|
| 191 |
+
return endpoint
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
router.add_api_route(
|
| 195 |
+
"/edges/upload", _upload_endpoint("edges"), methods=["POST"], response_model=DetectionResponse
|
| 196 |
+
)
|
| 197 |
+
router.add_api_route(
|
| 198 |
+
"/corners/upload", _upload_endpoint("corners"), methods=["POST"], response_model=DetectionResponse
|
| 199 |
+
)
|
| 200 |
+
router.add_api_route(
|
| 201 |
+
"/lines/upload", _upload_endpoint("lines"), methods=["POST"], response_model=DetectionResponse
|
| 202 |
+
)
|
| 203 |
+
router.add_api_route(
|
| 204 |
+
"/ellipses/upload", _upload_endpoint("ellipses"), methods=["POST"], response_model=DetectionResponse
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
@router.websocket("/stream")
|
| 209 |
+
async def detection_stream(websocket: WebSocket):
|
| 210 |
+
await websocket.accept()
|
| 211 |
+
await websocket.send_json({"ready": True})
|
| 212 |
+
try:
|
| 213 |
+
while True:
|
| 214 |
+
message = await websocket.receive_text()
|
| 215 |
+
try:
|
| 216 |
+
payload = json.loads(message)
|
| 217 |
+
except json.JSONDecodeError:
|
| 218 |
+
await websocket.send_json({"error": "Invalid JSON payload."})
|
| 219 |
+
continue
|
| 220 |
+
|
| 221 |
+
detector_key = payload.get("detector")
|
| 222 |
+
if detector_key not in DETECTOR_KEYS:
|
| 223 |
+
await websocket.send_json({"error": "Unknown detector key."})
|
| 224 |
+
continue
|
| 225 |
+
|
| 226 |
+
image_b64 = payload.get("image")
|
| 227 |
+
if not image_b64:
|
| 228 |
+
await websocket.send_json({"error": "Missing 'image' field."})
|
| 229 |
+
continue
|
| 230 |
+
|
| 231 |
+
try:
|
| 232 |
+
image = decode_base64_image(image_b64)
|
| 233 |
+
except Exception as exc:
|
| 234 |
+
await websocket.send_json({"error": f"Invalid image payload: {exc}"})
|
| 235 |
+
continue
|
| 236 |
+
|
| 237 |
+
params = payload.get("params")
|
| 238 |
+
if params is not None and not isinstance(params, dict):
|
| 239 |
+
await websocket.send_json({"error": "'params' must be an object."})
|
| 240 |
+
continue
|
| 241 |
+
|
| 242 |
+
mode = payload.get("mode", "classical")
|
| 243 |
+
compare = bool(payload.get("compare", False))
|
| 244 |
+
dl_model = payload.get("dl_model") or payload.get("model")
|
| 245 |
+
|
| 246 |
+
runtime_mode = _resolve_mode(mode, compare)
|
| 247 |
+
try:
|
| 248 |
+
result = run_detection(
|
| 249 |
+
image,
|
| 250 |
+
_detector_label(detector_key),
|
| 251 |
+
params=params,
|
| 252 |
+
mode=runtime_mode,
|
| 253 |
+
dl_choice=dl_model.strip() if dl_model else None,
|
| 254 |
+
)
|
| 255 |
+
except Exception as exc: # pragma: no cover
|
| 256 |
+
await websocket.send_json({"error": str(exc)})
|
| 257 |
+
continue
|
| 258 |
+
|
| 259 |
+
await websocket.send_json(_format_result(result, runtime_mode).dict())
|
| 260 |
+
except WebSocketDisconnect:
|
| 261 |
+
return
|
| 262 |
+
|
backend/py/app/gradio_demo/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__all__ = []
|
| 2 |
+
|
backend/py/app/gradio_demo/ui.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, Optional, Tuple
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
from ..inference.dl import DL_MODELS
|
| 7 |
+
from ..services.runtime_adapter import DEFAULT_PARAMS, run_detection
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
TITLE = "FeatureLab Mini — Classic vs DL"
|
| 11 |
+
DESC = (
|
| 12 |
+
"Minimal feature-detection demo with Classical and Deep Learning paths, now backed by a shared runtime."
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def _gradio_runtime(
|
| 17 |
+
image: Optional[np.ndarray],
|
| 18 |
+
detector: str,
|
| 19 |
+
compare: bool,
|
| 20 |
+
dl_choice: str,
|
| 21 |
+
canny_low: int,
|
| 22 |
+
canny_high: int,
|
| 23 |
+
harris_k: float,
|
| 24 |
+
harris_block: int,
|
| 25 |
+
harris_ksize: int,
|
| 26 |
+
hough_thresh: int,
|
| 27 |
+
hough_min_len: int,
|
| 28 |
+
hough_max_gap: int,
|
| 29 |
+
ellipse_min_area: int,
|
| 30 |
+
max_ellipses: int,
|
| 31 |
+
) -> Tuple[Optional[np.ndarray], Optional[np.ndarray], Dict[str, Any]]:
|
| 32 |
+
if image is None:
|
| 33 |
+
return None, None, {"info": "No image provided."}
|
| 34 |
+
|
| 35 |
+
params = {
|
| 36 |
+
"canny_low": int(canny_low),
|
| 37 |
+
"canny_high": int(canny_high),
|
| 38 |
+
"harris_k": float(harris_k),
|
| 39 |
+
"harris_block": int(harris_block),
|
| 40 |
+
"harris_ksize": int(harris_ksize),
|
| 41 |
+
"hough_thresh": int(hough_thresh),
|
| 42 |
+
"hough_min_len": int(hough_min_len),
|
| 43 |
+
"hough_max_gap": int(hough_max_gap),
|
| 44 |
+
"ellipse_min_area": int(ellipse_min_area),
|
| 45 |
+
"max_ellipses": int(max_ellipses),
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
mode = "both" if compare else "classical"
|
| 49 |
+
dl_model = dl_choice.strip() or None
|
| 50 |
+
result = run_detection(image, detector, params=params, mode=mode, dl_choice=dl_model)
|
| 51 |
+
|
| 52 |
+
classical_img = result.overlays.get("classical")
|
| 53 |
+
dl_img = result.overlays.get("dl")
|
| 54 |
+
meta = {
|
| 55 |
+
"timings_ms": result.timings_ms,
|
| 56 |
+
"fps_estimate": result.fps_estimate,
|
| 57 |
+
"features": result.features,
|
| 58 |
+
"models": result.models,
|
| 59 |
+
}
|
| 60 |
+
return classical_img, dl_img, meta
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def build_demo() -> gr.Blocks:
|
| 64 |
+
defaults = dict(DEFAULT_PARAMS)
|
| 65 |
+
|
| 66 |
+
with gr.Blocks(title=TITLE) as demo:
|
| 67 |
+
gr.Markdown(f"# {TITLE}\n{DESC}")
|
| 68 |
+
|
| 69 |
+
with gr.Row():
|
| 70 |
+
with gr.Column(scale=1):
|
| 71 |
+
in_img = gr.Image(
|
| 72 |
+
type="numpy",
|
| 73 |
+
label="Input image (Upload / Clipboard / Webcam)",
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
detector = gr.Radio(
|
| 77 |
+
[
|
| 78 |
+
"Edges (Canny)",
|
| 79 |
+
"Corners (Harris)",
|
| 80 |
+
"Lines (Hough)",
|
| 81 |
+
"Ellipses (Contours + fitEllipse)",
|
| 82 |
+
],
|
| 83 |
+
value="Edges (Canny)",
|
| 84 |
+
label="Detector",
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
compare = gr.Checkbox(value=True, label="Compare Classical vs DL side-by-side")
|
| 88 |
+
dl_choice = gr.Textbox(value="", label="DL model filename (optional, in ./models)")
|
| 89 |
+
|
| 90 |
+
with gr.Accordion("Parameters", open=False):
|
| 91 |
+
canny_low = gr.Slider(0, 255, value=defaults["canny_low"], step=1, label="Canny low threshold")
|
| 92 |
+
canny_high = gr.Slider(0, 255, value=defaults["canny_high"], step=1, label="Canny high threshold")
|
| 93 |
+
harris_k = gr.Slider(0.02, 0.15, value=defaults["harris_k"], step=0.005, label="Harris k")
|
| 94 |
+
harris_block = gr.Slider(2, 8, value=defaults["harris_block"], step=1, label="Harris blockSize")
|
| 95 |
+
harris_ksize = gr.Slider(3, 7, value=defaults["harris_ksize"], step=2, label="Harris ksize (odd)")
|
| 96 |
+
hough_thresh = gr.Slider(1, 200, value=defaults["hough_thresh"], step=1, label="Hough threshold")
|
| 97 |
+
hough_min_len = gr.Slider(1, 300, value=defaults["hough_min_len"], step=1, label="Hough minLineLength")
|
| 98 |
+
hough_max_gap = gr.Slider(0, 50, value=defaults["hough_max_gap"], step=1, label="Hough maxLineGap")
|
| 99 |
+
ellipse_min_area = gr.Slider(10, 50000, value=defaults["ellipse_min_area"], step=10, label="Ellipse min area (px^2)")
|
| 100 |
+
max_ellipses = gr.Slider(1, 20, value=defaults["max_ellipses"], step=1, label="Max ellipses")
|
| 101 |
+
|
| 102 |
+
with gr.Accordion("DL Models (how to enable)", open=False):
|
| 103 |
+
dl_lines = "\n".join(
|
| 104 |
+
f"- **{det}**: {', '.join(models) if models else 'n/a'}" for det, models in DL_MODELS.items()
|
| 105 |
+
)
|
| 106 |
+
gr.Markdown(
|
| 107 |
+
f"""
|
| 108 |
+
Place ONNX files in `./models` (create the folder next to the repo root).
|
| 109 |
+
|
| 110 |
+
**Expected filenames (defaults):**
|
| 111 |
+
{dl_lines}
|
| 112 |
+
|
| 113 |
+
Backends use onnxruntime with CoreML (if available) or CPU provider.
|
| 114 |
+
"""
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
run_btn = gr.Button("Run", variant="primary")
|
| 118 |
+
|
| 119 |
+
with gr.Column(scale=1):
|
| 120 |
+
with gr.Row():
|
| 121 |
+
out_img_classical = gr.Image(type="numpy", label="Classical Overlay", interactive=False)
|
| 122 |
+
out_img_dl = gr.Image(type="numpy", label="DL Overlay", interactive=False)
|
| 123 |
+
meta_json = gr.JSON(label="Timings / Metadata")
|
| 124 |
+
|
| 125 |
+
run_btn.click(
|
| 126 |
+
fn=_gradio_runtime,
|
| 127 |
+
inputs=[
|
| 128 |
+
in_img,
|
| 129 |
+
detector,
|
| 130 |
+
compare,
|
| 131 |
+
dl_choice,
|
| 132 |
+
canny_low,
|
| 133 |
+
canny_high,
|
| 134 |
+
harris_k,
|
| 135 |
+
harris_block,
|
| 136 |
+
harris_ksize,
|
| 137 |
+
hough_thresh,
|
| 138 |
+
hough_min_len,
|
| 139 |
+
hough_max_gap,
|
| 140 |
+
ellipse_min_area,
|
| 141 |
+
max_ellipses,
|
| 142 |
+
],
|
| 143 |
+
outputs=[out_img_classical, out_img_dl, meta_json],
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
# Auto-run whenever a new image is captured or uploaded
|
| 147 |
+
in_img.change(
|
| 148 |
+
fn=_gradio_runtime,
|
| 149 |
+
inputs=[
|
| 150 |
+
in_img,
|
| 151 |
+
detector,
|
| 152 |
+
compare,
|
| 153 |
+
dl_choice,
|
| 154 |
+
canny_low,
|
| 155 |
+
canny_high,
|
| 156 |
+
harris_k,
|
| 157 |
+
harris_block,
|
| 158 |
+
harris_ksize,
|
| 159 |
+
hough_thresh,
|
| 160 |
+
hough_min_len,
|
| 161 |
+
hough_max_gap,
|
| 162 |
+
ellipse_min_area,
|
| 163 |
+
max_ellipses,
|
| 164 |
+
],
|
| 165 |
+
outputs=[out_img_classical, out_img_dl, meta_json],
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
return demo
|
backend/py/app/inference/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__all__ = []
|
| 2 |
+
|
backend/py/app/inference/classical.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, Tuple
|
| 2 |
+
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
from .common import to_bgr, to_rgb
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def detect_classical(
|
| 10 |
+
image: np.ndarray,
|
| 11 |
+
detector: str,
|
| 12 |
+
canny_low: int,
|
| 13 |
+
canny_high: int,
|
| 14 |
+
harris_k: float,
|
| 15 |
+
harris_block: int,
|
| 16 |
+
harris_ksize: int,
|
| 17 |
+
hough_thresh: int,
|
| 18 |
+
hough_min_len: int,
|
| 19 |
+
hough_max_gap: int,
|
| 20 |
+
ellipse_min_area: int,
|
| 21 |
+
max_ellipses: int,
|
| 22 |
+
) -> Tuple[np.ndarray, Dict[str, Any]]:
|
| 23 |
+
bgr = to_bgr(image)
|
| 24 |
+
gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
|
| 25 |
+
|
| 26 |
+
overlay = bgr.copy()
|
| 27 |
+
meta: Dict[str, Any] = {"path": "classical"}
|
| 28 |
+
|
| 29 |
+
if detector == "Edges (Canny)":
|
| 30 |
+
edges = cv2.Canny(gray, canny_low, canny_high, L2gradient=True)
|
| 31 |
+
overlay[edges > 0] = (0, 255, 0)
|
| 32 |
+
meta["num_edge_pixels"] = int(np.count_nonzero(edges))
|
| 33 |
+
|
| 34 |
+
elif detector == "Corners (Harris)":
|
| 35 |
+
gray32 = np.float32(gray)
|
| 36 |
+
dst = cv2.cornerHarris(gray32, blockSize=harris_block, ksize=harris_ksize, k=harris_k)
|
| 37 |
+
dst = cv2.dilate(dst, None)
|
| 38 |
+
thresh = 0.01 * dst.max() if dst.max() > 0 else 0.0
|
| 39 |
+
corners = np.argwhere(dst > thresh)
|
| 40 |
+
for (y, x) in corners:
|
| 41 |
+
cv2.circle(overlay, (int(x), int(y)), 2, (0, 255, 255), -1)
|
| 42 |
+
meta["num_corners"] = int(len(corners))
|
| 43 |
+
|
| 44 |
+
elif detector == "Lines (Hough)":
|
| 45 |
+
edges = cv2.Canny(gray, canny_low, canny_high, L2gradient=True)
|
| 46 |
+
lines = cv2.HoughLinesP(edges, rho=1, theta=np.pi / 180, threshold=hough_thresh,
|
| 47 |
+
minLineLength=hough_min_len, maxLineGap=hough_max_gap)
|
| 48 |
+
n = 0
|
| 49 |
+
if lines is not None:
|
| 50 |
+
for l in lines:
|
| 51 |
+
x1, y1, x2, y2 = l[0]
|
| 52 |
+
cv2.line(overlay, (x1, y1), (x2, y2), (255, 128, 0), 2)
|
| 53 |
+
n = len(lines)
|
| 54 |
+
meta["num_lines"] = int(n)
|
| 55 |
+
|
| 56 |
+
elif detector == "Ellipses (Contours + fitEllipse)":
|
| 57 |
+
edges = cv2.Canny(gray, canny_low, canny_high, L2gradient=True)
|
| 58 |
+
contours, _ = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
|
| 59 |
+
ellipses = []
|
| 60 |
+
for cnt in contours:
|
| 61 |
+
if len(cnt) < 5:
|
| 62 |
+
continue
|
| 63 |
+
try:
|
| 64 |
+
(cx, cy), (MA, ma), angle = cv2.fitEllipse(cnt)
|
| 65 |
+
area = float(np.pi * (MA / 2) * (ma / 2))
|
| 66 |
+
if area >= ellipse_min_area:
|
| 67 |
+
ellipses.append(((cx, cy), (MA, ma), angle, area))
|
| 68 |
+
except cv2.error:
|
| 69 |
+
continue
|
| 70 |
+
ellipses.sort(key=lambda e: e[3], reverse=True)
|
| 71 |
+
kept = []
|
| 72 |
+
for e in ellipses:
|
| 73 |
+
if len(kept) >= max_ellipses:
|
| 74 |
+
break
|
| 75 |
+
(cx, cy), (MA, ma), angle, area = e
|
| 76 |
+
if all((cx - kx) ** 2 + (cy - ky) ** 2 > 100 for ((kx, ky), _, _, _) in kept):
|
| 77 |
+
kept.append(e)
|
| 78 |
+
for (cx, cy), (MA, ma), angle, area in kept:
|
| 79 |
+
cv2.ellipse(overlay, ((int(cx), int(cy)), (int(MA), int(ma)), float(angle)), (0, 200, 255), 2)
|
| 80 |
+
cv2.circle(overlay, (int(cx), int(cy)), 2, (0, 200, 255), -1)
|
| 81 |
+
meta["num_ellipses"] = int(len(kept))
|
| 82 |
+
|
| 83 |
+
else:
|
| 84 |
+
meta["error"] = f"Unknown detector: {detector}"
|
| 85 |
+
|
| 86 |
+
return to_rgb(overlay), meta
|
| 87 |
+
|
backend/py/app/inference/common.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def to_bgr(img: np.ndarray) -> np.ndarray:
|
| 6 |
+
if img.ndim == 2:
|
| 7 |
+
return cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
| 8 |
+
if img.shape[2] == 4:
|
| 9 |
+
return cv2.cvtColor(img, cv2.COLOR_RGBA2BGR)
|
| 10 |
+
return cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def to_rgb(img: np.ndarray) -> np.ndarray:
|
| 14 |
+
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 15 |
+
|
backend/py/app/inference/dl.py
ADDED
|
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Any, Dict, Optional, Tuple
|
| 3 |
+
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
from .common import to_bgr, to_rgb
|
| 8 |
+
|
| 9 |
+
try:
|
| 10 |
+
import onnxruntime as ort # type: ignore
|
| 11 |
+
except Exception: # pragma: no cover
|
| 12 |
+
ort = None # type: ignore
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
MODEL_DIR = os.path.join(os.getcwd(), "models")
|
| 16 |
+
|
| 17 |
+
DL_MODELS = {
|
| 18 |
+
"Edges (Canny)": ["hed.onnx", "dexined.onnx"],
|
| 19 |
+
"Corners (Harris)": ["superpoint.onnx"],
|
| 20 |
+
"Lines (Hough)": ["sold2.onnx", "hawp.onnx"],
|
| 21 |
+
"Ellipses (Contours + fitEllipse)": ["ellipse_head.onnx"],
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def _find_model(detector: str, choice_name: Optional[str]) -> Optional[str]:
|
| 26 |
+
if choice_name:
|
| 27 |
+
p = os.path.join(MODEL_DIR, choice_name)
|
| 28 |
+
return p if os.path.isfile(p) else None
|
| 29 |
+
for fname in DL_MODELS.get(detector, []):
|
| 30 |
+
p = os.path.join(MODEL_DIR, fname)
|
| 31 |
+
if os.path.isfile(p):
|
| 32 |
+
return p
|
| 33 |
+
return None
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def _load_session(path: str):
|
| 37 |
+
if ort is None:
|
| 38 |
+
raise RuntimeError("onnxruntime not installed. `pip install onnxruntime`.")
|
| 39 |
+
providers = ["CoreMLExecutionProvider", "CPUExecutionProvider"] if "darwin" in os.sys.platform else ["CPUExecutionProvider"]
|
| 40 |
+
try:
|
| 41 |
+
return ort.InferenceSession(path, providers=providers)
|
| 42 |
+
except Exception as e:
|
| 43 |
+
raise RuntimeError(f"Failed to load ONNX model '{path}': {e}")
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def detect_dl(
|
| 47 |
+
image: np.ndarray,
|
| 48 |
+
detector: str,
|
| 49 |
+
model_choice: Optional[str],
|
| 50 |
+
) -> Tuple[np.ndarray, Dict[str, Any]]:
|
| 51 |
+
bgr = to_bgr(image)
|
| 52 |
+
rgb = to_rgb(bgr)
|
| 53 |
+
h, w = rgb.shape[:2]
|
| 54 |
+
meta: Dict[str, Any] = {"path": "dl"}
|
| 55 |
+
|
| 56 |
+
model_path = _find_model(detector, model_choice)
|
| 57 |
+
if model_path is None:
|
| 58 |
+
meta["warning"] = (
|
| 59 |
+
f"No ONNX model found for '{detector}'. Place a model in ./models."
|
| 60 |
+
f" Expected one of: {DL_MODELS.get(detector, [])}"
|
| 61 |
+
)
|
| 62 |
+
return rgb, meta
|
| 63 |
+
|
| 64 |
+
meta["model_path"] = model_path
|
| 65 |
+
|
| 66 |
+
try:
|
| 67 |
+
sess = _load_session(model_path)
|
| 68 |
+
except Exception as e:
|
| 69 |
+
meta["error"] = str(e)
|
| 70 |
+
return rgb, meta
|
| 71 |
+
|
| 72 |
+
input_name = sess.get_inputs()[0].name
|
| 73 |
+
in_shape = sess.get_inputs()[0].shape # e.g., [1,3,H,W] or dynamic
|
| 74 |
+
target_h, target_w = None, None
|
| 75 |
+
if len(in_shape) == 4:
|
| 76 |
+
target_h = in_shape[2] if isinstance(in_shape[2], int) and in_shape[2] > 0 else 512
|
| 77 |
+
target_w = in_shape[3] if isinstance(in_shape[3], int) and in_shape[3] > 0 else 512
|
| 78 |
+
else:
|
| 79 |
+
target_h, target_w = 512, 512
|
| 80 |
+
|
| 81 |
+
img_resized = cv2.resize(rgb, (target_w, target_h), interpolation=cv2.INTER_AREA)
|
| 82 |
+
x = img_resized.astype(np.float32) / 255.0
|
| 83 |
+
if x.ndim == 2:
|
| 84 |
+
x = np.expand_dims(x, axis=-1)
|
| 85 |
+
if x.shape[2] == 1:
|
| 86 |
+
x = np.repeat(x, 3, axis=2)
|
| 87 |
+
x = np.transpose(x, (2, 0, 1))[None, ...] # NCHW
|
| 88 |
+
|
| 89 |
+
try:
|
| 90 |
+
outputs = sess.run(None, {input_name: x})
|
| 91 |
+
except Exception as e:
|
| 92 |
+
meta["error"] = f"ONNX inference failed: {e}"
|
| 93 |
+
return rgb, meta
|
| 94 |
+
|
| 95 |
+
overlay = rgb.copy()
|
| 96 |
+
if detector == "Edges (Canny)":
|
| 97 |
+
pred = outputs[0]
|
| 98 |
+
if pred.ndim == 4:
|
| 99 |
+
prob = pred[0, 0]
|
| 100 |
+
prob = (prob - prob.min()) / (prob.max() - prob.min() + 1e-8)
|
| 101 |
+
edges = (prob > 0.5).astype(np.uint8) * 255
|
| 102 |
+
edges = cv2.resize(edges, (w, h), interpolation=cv2.INTER_NEAREST)
|
| 103 |
+
bgr2 = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)
|
| 104 |
+
bgr2[edges > 0] = (0, 255, 0)
|
| 105 |
+
overlay = cv2.cvtColor(bgr2, cv2.COLOR_BGR2RGB)
|
| 106 |
+
meta["edge_prob_mean"] = float(prob.mean())
|
| 107 |
+
else:
|
| 108 |
+
meta["warning"] = "Unexpected model output shape for edges."
|
| 109 |
+
|
| 110 |
+
elif detector == "Corners (Harris)":
|
| 111 |
+
pred = outputs[0]
|
| 112 |
+
if pred.ndim == 4:
|
| 113 |
+
heat = pred[0, 0]
|
| 114 |
+
heat = (heat - heat.min()) / (heat.max() - heat.min() + 1e-8)
|
| 115 |
+
heat = cv2.resize(heat, (w, h), interpolation=cv2.INTER_CUBIC)
|
| 116 |
+
ys, xs = np.where(heat > 0.5)
|
| 117 |
+
overlay = rgb.copy()
|
| 118 |
+
for (y, x_) in zip(ys.tolist(), xs.tolist()):
|
| 119 |
+
cv2.circle(overlay, (int(x_), int(y)), 2, (0, 255, 255), -1)
|
| 120 |
+
meta["num_corners"] = int(len(xs))
|
| 121 |
+
else:
|
| 122 |
+
meta["warning"] = "Unexpected model output shape for corners."
|
| 123 |
+
|
| 124 |
+
elif detector == "Lines (Hough)":
|
| 125 |
+
pred = outputs[0]
|
| 126 |
+
if pred.ndim == 4:
|
| 127 |
+
heat = pred[0, 0]
|
| 128 |
+
heat = (heat - heat.min()) / (heat.max() - heat.min() + 1e-8)
|
| 129 |
+
mask = (heat > 0.5).astype(np.uint8) * 255
|
| 130 |
+
mask = cv2.resize(mask, (w, h), interpolation=cv2.INTER_NEAREST)
|
| 131 |
+
lines = cv2.HoughLinesP(mask, 1, np.pi/180, 50, minLineLength=30, maxLineGap=5)
|
| 132 |
+
overlay = rgb.copy()
|
| 133 |
+
n = 0
|
| 134 |
+
if lines is not None:
|
| 135 |
+
for l in lines:
|
| 136 |
+
x1, y1, x2, y2 = l[0]
|
| 137 |
+
cv2.line(overlay, (x1, y1), (x2, y2), (255, 128, 0), 2)
|
| 138 |
+
n = len(lines)
|
| 139 |
+
meta["num_lines"] = int(n)
|
| 140 |
+
else:
|
| 141 |
+
meta["warning"] = "Unexpected model output for lines."
|
| 142 |
+
|
| 143 |
+
elif detector == "Ellipses (Contours + fitEllipse)":
|
| 144 |
+
pred = outputs[0]
|
| 145 |
+
if pred.ndim == 4:
|
| 146 |
+
heat = pred[0, 0]
|
| 147 |
+
heat = (heat - heat.min()) / (heat.max() - heat.min() + 1e-8)
|
| 148 |
+
mask = (heat > 0.5).astype(np.uint8) * 255
|
| 149 |
+
mask = cv2.resize(mask, (w, h), interpolation=cv2.INTER_NEAREST)
|
| 150 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
|
| 151 |
+
count = 0
|
| 152 |
+
for cnt in contours:
|
| 153 |
+
if len(cnt) < 5:
|
| 154 |
+
continue
|
| 155 |
+
try:
|
| 156 |
+
(cx, cy), (MA, ma), angle = cv2.fitEllipse(cnt)
|
| 157 |
+
area = float(np.pi * (MA / 2) * (ma / 2))
|
| 158 |
+
if area >= 300:
|
| 159 |
+
cv2.ellipse(overlay, ((int(cx), int(cy)), (int(MA), int(ma)), float(angle)), (0, 200, 255), 2)
|
| 160 |
+
count += 1
|
| 161 |
+
except cv2.error:
|
| 162 |
+
continue
|
| 163 |
+
meta["num_ellipses"] = int(count)
|
| 164 |
+
else:
|
| 165 |
+
meta["warning"] = "Unexpected model output for ellipses."
|
| 166 |
+
|
| 167 |
+
else:
|
| 168 |
+
meta["error"] = f"Unknown detector: {detector}"
|
| 169 |
+
|
| 170 |
+
return overlay, meta
|
| 171 |
+
|
backend/py/app/main.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Any
|
| 3 |
+
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from fastapi import FastAPI
|
| 6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 7 |
+
|
| 8 |
+
from .api.v1.detect import router as detect_router
|
| 9 |
+
from .gradio_demo.ui import build_demo
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def create_app() -> FastAPI:
|
| 13 |
+
app = FastAPI(title="FeatureLab Runtime", version="0.3.0")
|
| 14 |
+
|
| 15 |
+
app.add_middleware(
|
| 16 |
+
CORSMiddleware,
|
| 17 |
+
allow_origins=["*"],
|
| 18 |
+
allow_credentials=False,
|
| 19 |
+
allow_methods=["*"],
|
| 20 |
+
allow_headers=["*"],
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
app.include_router(detect_router)
|
| 24 |
+
|
| 25 |
+
demo = build_demo()
|
| 26 |
+
gr.mount_gradio_app(app, demo, path="/")
|
| 27 |
+
|
| 28 |
+
@app.get("/health")
|
| 29 |
+
async def healthcheck() -> Any:
|
| 30 |
+
return {"status": "ok"}
|
| 31 |
+
|
| 32 |
+
return app
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
app = create_app()
|
| 36 |
+
|
backend/py/app/services/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__all__ = []
|
| 2 |
+
|
backend/py/app/services/runtime_adapter.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
from dataclasses import dataclass, field
|
| 4 |
+
from typing import Any, Dict, Literal, Optional
|
| 5 |
+
|
| 6 |
+
import cv2
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
from ..inference.classical import detect_classical
|
| 10 |
+
from ..inference.dl import DL_MODELS, detect_dl
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
DEFAULT_PARAMS: Dict[str, Any] = {
|
| 14 |
+
"canny_low": 50,
|
| 15 |
+
"canny_high": 150,
|
| 16 |
+
"harris_k": 0.05,
|
| 17 |
+
"harris_block": 2,
|
| 18 |
+
"harris_ksize": 3,
|
| 19 |
+
"hough_thresh": 50,
|
| 20 |
+
"hough_min_len": 30,
|
| 21 |
+
"hough_max_gap": 5,
|
| 22 |
+
"ellipse_min_area": 300,
|
| 23 |
+
"max_ellipses": 5,
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
PARAM_TYPES: Dict[str, Any] = {
|
| 27 |
+
"canny_low": int,
|
| 28 |
+
"canny_high": int,
|
| 29 |
+
"harris_k": float,
|
| 30 |
+
"harris_block": int,
|
| 31 |
+
"harris_ksize": int,
|
| 32 |
+
"hough_thresh": int,
|
| 33 |
+
"hough_min_len": int,
|
| 34 |
+
"hough_max_gap": int,
|
| 35 |
+
"ellipse_min_area": int,
|
| 36 |
+
"max_ellipses": int,
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
CLASSICAL_MODEL_INFO = {"name": "opencv-classical", "version": cv2.__version__}
|
| 40 |
+
|
| 41 |
+
try:
|
| 42 |
+
import onnxruntime as ort # type: ignore
|
| 43 |
+
except Exception: # pragma: no cover
|
| 44 |
+
ort = None # type: ignore
|
| 45 |
+
|
| 46 |
+
DL_MODEL_INFO = {
|
| 47 |
+
"name": "onnxruntime" if ort is not None else "onnxruntime-missing",
|
| 48 |
+
"version": getattr(ort, "__version__", "unknown"),
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def merge_params(params: Optional[Dict[str, Any]]) -> Dict[str, Any]:
|
| 53 |
+
merged = DEFAULT_PARAMS.copy()
|
| 54 |
+
if params:
|
| 55 |
+
for key, value in params.items():
|
| 56 |
+
if value is None or key not in DEFAULT_PARAMS:
|
| 57 |
+
continue
|
| 58 |
+
caster = PARAM_TYPES.get(key, lambda x: x)
|
| 59 |
+
try:
|
| 60 |
+
merged[key] = caster(value)
|
| 61 |
+
except (TypeError, ValueError):
|
| 62 |
+
continue
|
| 63 |
+
return merged
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
@dataclass
|
| 67 |
+
class DetectionResult:
|
| 68 |
+
overlays: Dict[str, np.ndarray] = field(default_factory=dict)
|
| 69 |
+
features: Dict[str, Dict[str, Any]] = field(default_factory=dict)
|
| 70 |
+
timings_ms: Dict[str, float] = field(default_factory=dict)
|
| 71 |
+
fps_estimate: Optional[float] = None
|
| 72 |
+
models: Dict[str, Dict[str, Any]] = field(default_factory=dict)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def run_detection(
|
| 76 |
+
image: np.ndarray,
|
| 77 |
+
detector: str,
|
| 78 |
+
params: Optional[Dict[str, Any]] = None,
|
| 79 |
+
mode: Literal["classical", "dl", "both"] = "classical",
|
| 80 |
+
dl_choice: Optional[str] = None,
|
| 81 |
+
) -> DetectionResult:
|
| 82 |
+
merged = merge_params(params)
|
| 83 |
+
overlays: Dict[str, np.ndarray] = {}
|
| 84 |
+
features: Dict[str, Dict[str, Any]] = {}
|
| 85 |
+
timings: Dict[str, float] = {}
|
| 86 |
+
models: Dict[str, Dict[str, Any]] = {}
|
| 87 |
+
|
| 88 |
+
execute_classical = mode in ("classical", "both")
|
| 89 |
+
execute_dl = mode in ("dl", "both")
|
| 90 |
+
|
| 91 |
+
total_ms = 0.0
|
| 92 |
+
|
| 93 |
+
if execute_classical:
|
| 94 |
+
t0 = time.perf_counter()
|
| 95 |
+
classical_img, classical_meta = detect_classical(
|
| 96 |
+
image,
|
| 97 |
+
detector,
|
| 98 |
+
merged["canny_low"],
|
| 99 |
+
merged["canny_high"],
|
| 100 |
+
merged["harris_k"],
|
| 101 |
+
merged["harris_block"],
|
| 102 |
+
merged["harris_ksize"],
|
| 103 |
+
merged["hough_thresh"],
|
| 104 |
+
merged["hough_min_len"],
|
| 105 |
+
merged["hough_max_gap"],
|
| 106 |
+
merged["ellipse_min_area"],
|
| 107 |
+
merged["max_ellipses"],
|
| 108 |
+
)
|
| 109 |
+
t_ms = (time.perf_counter() - t0) * 1000.0
|
| 110 |
+
overlays["classical"] = classical_img
|
| 111 |
+
features["classical"] = classical_meta
|
| 112 |
+
timings["classical"] = round(t_ms, 2)
|
| 113 |
+
models["classical"] = CLASSICAL_MODEL_INFO
|
| 114 |
+
total_ms += t_ms
|
| 115 |
+
|
| 116 |
+
if execute_dl:
|
| 117 |
+
t0 = time.perf_counter()
|
| 118 |
+
dl_img, dl_meta = detect_dl(image, detector, dl_choice)
|
| 119 |
+
t_ms = (time.perf_counter() - t0) * 1000.0
|
| 120 |
+
overlays["dl"] = dl_img
|
| 121 |
+
features["dl"] = dl_meta
|
| 122 |
+
timings["dl"] = round(t_ms, 2)
|
| 123 |
+
model_name = (
|
| 124 |
+
os.path.basename(dl_meta["model_path"]) if "model_path" in dl_meta else DL_MODEL_INFO["name"]
|
| 125 |
+
)
|
| 126 |
+
models["dl"] = {"name": model_name, "version": DL_MODEL_INFO["version"]}
|
| 127 |
+
total_ms += t_ms
|
| 128 |
+
|
| 129 |
+
timings["total"] = round(total_ms, 2)
|
| 130 |
+
fps = round(1000.0 / total_ms, 2) if total_ms > 0 else None
|
| 131 |
+
|
| 132 |
+
return DetectionResult(
|
| 133 |
+
overlays=overlays,
|
| 134 |
+
features=features,
|
| 135 |
+
timings_ms=timings,
|
| 136 |
+
fps_estimate=fps,
|
| 137 |
+
models=models,
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
__all__ = [
|
| 142 |
+
"DetectionResult",
|
| 143 |
+
"DEFAULT_PARAMS",
|
| 144 |
+
"DL_MODELS",
|
| 145 |
+
"merge_params",
|
| 146 |
+
"run_detection",
|
| 147 |
+
]
|
| 148 |
+
|
backend/py/app/utils/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__all__ = []
|
| 2 |
+
|
backend/py/app/utils/image_io.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
from typing import Optional
|
| 3 |
+
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def encode_png_base64(image: np.ndarray) -> str:
|
| 9 |
+
bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
| 10 |
+
success, buf = cv2.imencode('.png', bgr)
|
| 11 |
+
if not success:
|
| 12 |
+
raise RuntimeError('Failed to encode image to PNG.')
|
| 13 |
+
return base64.b64encode(buf.tobytes()).decode('ascii')
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def decode_base64_image(data: str) -> np.ndarray:
|
| 17 |
+
# Support data URLs: data:image/png;base64,....
|
| 18 |
+
if ',' in data and data.strip().startswith('data:'):
|
| 19 |
+
data = data.split(',', 1)[1]
|
| 20 |
+
binary = base64.b64decode(data)
|
| 21 |
+
arr = np.frombuffer(binary, dtype=np.uint8)
|
| 22 |
+
image = cv2.imdecode(arr, cv2.IMREAD_COLOR)
|
| 23 |
+
if image is None:
|
| 24 |
+
raise ValueError('Unable to decode image.')
|
| 25 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 26 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.44.0
|
| 2 |
+
opencv-python-headless>=4.10.0.84
|
| 3 |
+
numpy>=1.26.0
|
| 4 |
+
fastapi>=0.112.0
|
| 5 |
+
uvicorn>=0.30.0
|
| 6 |
+
python-multipart>=0.0.9
|