Update app.py
Browse files
app.py
CHANGED
|
@@ -1,72 +1,88 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
import time
|
| 5 |
-
from ccd import ccd_eval, run_eval
|
| 6 |
-
from libra.eval.run_libra import load_model
|
| 7 |
|
| 8 |
# =========================================
|
| 9 |
# Safe Libra Hook (CPU fallback + dtype fix)
|
|
|
|
| 10 |
# =========================================
|
| 11 |
-
import torch
|
| 12 |
import libra.model.builder as builder
|
| 13 |
import libra.eval.run_libra as run_libra
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
_original_load_pretrained_model = builder
|
| 17 |
|
| 18 |
def safe_load_pretrained_model(model_path, model_base=None, model_name=None, **kwargs):
|
| 19 |
print("[INFO] Hook activated: safe_load_pretrained_model()")
|
| 20 |
|
| 21 |
-
#
|
| 22 |
if model_name is None:
|
| 23 |
model_name = model_path
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
|
| 27 |
-
kwargs
|
| 28 |
-
kwargs.setdefault(
|
| 29 |
-
kwargs.setdefault("device_map", "cpu")
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
tokenizer, model, image_processor, context_len = _original_load_pretrained_model(
|
| 34 |
-
model_path, model_base, model_name, **kwargs
|
| 35 |
-
)
|
| 36 |
|
| 37 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
if not torch.cuda.is_available():
|
| 39 |
try:
|
| 40 |
-
# 语言模型主体
|
| 41 |
model.to(dtype=torch.float32)
|
| 42 |
except Exception as e:
|
| 43 |
print(f"[WARN] Could not upcast LM to float32: {e}")
|
| 44 |
-
|
| 45 |
try:
|
| 46 |
-
# 视觉塔
|
| 47 |
vt = model.get_vision_tower()
|
| 48 |
-
vt.to(device=
|
| 49 |
-
print(
|
| 50 |
except Exception as e:
|
| 51 |
print(f"[WARN] Could not move vision_tower to cpu/float32: {e}")
|
| 52 |
else:
|
| 53 |
-
|
| 54 |
-
print("[INFO] GPU available — default CUDA fp16 path is kept.")
|
| 55 |
|
| 56 |
return tokenizer, model, image_processor, context_len
|
| 57 |
|
| 58 |
# 将 builder 的加载函数替换为安全版
|
| 59 |
-
|
|
|
|
| 60 |
|
| 61 |
-
# 同时替换 run_libra.load_model
|
| 62 |
def safe_load_model(model_path, model_base=None, model_name=None):
|
| 63 |
-
print(
|
| 64 |
if model_name is None:
|
| 65 |
model_name = model_path
|
| 66 |
return safe_load_pretrained_model(model_path, model_base, model_name)
|
| 67 |
|
| 68 |
run_libra.load_model = safe_load_model
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
# =========================================
|
| 72 |
# Global Configuration
|
|
@@ -371,14 +387,16 @@ def main():
|
|
| 371 |
|
| 372 |
|
| 373 |
# Log that Gradio is starting (helpful when stdout/stderr are captured)
|
|
|
|
| 374 |
try:
|
| 375 |
-
|
|
|
|
| 376 |
f.write(f"\n=== GRADIO START ===\nstarted_at: {time.strftime('%Y-%m-%d %H:%M:%S')}\n\n")
|
| 377 |
except Exception:
|
| 378 |
pass
|
| 379 |
|
| 380 |
-
|
| 381 |
-
demo.launch(
|
| 382 |
|
| 383 |
|
| 384 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import os
|
| 2 |
+
# Force CPU-only in this process by hiding CUDA devices (set before importing heavy libs)
|
| 3 |
+
os.environ.setdefault('CUDA_VISIBLE_DEVICES', '')
|
| 4 |
+
|
| 5 |
import torch
|
| 6 |
import gradio as gr
|
| 7 |
import time
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# =========================================
|
| 10 |
# Safe Libra Hook (CPU fallback + dtype fix)
|
| 11 |
+
# This hook must run before any heavyweight libra model-loading occurs.
|
| 12 |
# =========================================
|
|
|
|
| 13 |
import libra.model.builder as builder
|
| 14 |
import libra.eval.run_libra as run_libra
|
| 15 |
|
| 16 |
+
# 保存原始函数(如果存在)
|
| 17 |
+
_original_load_pretrained_model = getattr(builder, 'load_pretrained_model', None)
|
| 18 |
|
| 19 |
def safe_load_pretrained_model(model_path, model_base=None, model_name=None, **kwargs):
|
| 20 |
print("[INFO] Hook activated: safe_load_pretrained_model()")
|
| 21 |
|
| 22 |
+
# 补全 model_name,避免 .lower() on None
|
| 23 |
if model_name is None:
|
| 24 |
model_name = model_path
|
| 25 |
|
| 26 |
+
# 强制以 CPU 参数调用原函数,尽量避免 CUDA 初始化
|
| 27 |
+
kwargs = dict(kwargs)
|
| 28 |
+
kwargs.setdefault('device', 'cpu')
|
| 29 |
+
kwargs.setdefault('device_map', 'cpu')
|
|
|
|
| 30 |
|
| 31 |
+
if _original_load_pretrained_model is None:
|
| 32 |
+
raise RuntimeError('Original load_pretrained_model not found in builder')
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
# Try calling the original with our kwargs; if it doesn't accept them, fall back.
|
| 35 |
+
try:
|
| 36 |
+
tokenizer, model, image_processor, context_len = _original_load_pretrained_model(
|
| 37 |
+
model_path, model_base, model_name, **kwargs
|
| 38 |
+
)
|
| 39 |
+
except TypeError as te:
|
| 40 |
+
# Some implementations don't accept device/device_map kwargs. Retry without them.
|
| 41 |
+
print(f"[WARN] original load_pretrained_model rejected kwargs: {te} — retrying without device kwargs")
|
| 42 |
+
try:
|
| 43 |
+
tokenizer, model, image_processor, context_len = _original_load_pretrained_model(
|
| 44 |
+
model_path, model_base, model_name
|
| 45 |
+
)
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f"[ERROR] load_pretrained_model failed on retry: {e}")
|
| 48 |
+
raise
|
| 49 |
+
except Exception:
|
| 50 |
+
# propagate other errors
|
| 51 |
+
raise
|
| 52 |
+
|
| 53 |
+
# 在 CPU 情况下尝试把模型和视觉塔上调到 float32,减少 CPU 上的兼容问题
|
| 54 |
if not torch.cuda.is_available():
|
| 55 |
try:
|
|
|
|
| 56 |
model.to(dtype=torch.float32)
|
| 57 |
except Exception as e:
|
| 58 |
print(f"[WARN] Could not upcast LM to float32: {e}")
|
|
|
|
| 59 |
try:
|
|
|
|
| 60 |
vt = model.get_vision_tower()
|
| 61 |
+
vt.to(device='cpu', dtype=torch.float32)
|
| 62 |
+
print('[INFO] Vision tower moved to cpu (float32).')
|
| 63 |
except Exception as e:
|
| 64 |
print(f"[WARN] Could not move vision_tower to cpu/float32: {e}")
|
| 65 |
else:
|
| 66 |
+
print('[INFO] GPU available — keeping original device/dtype behavior.')
|
|
|
|
| 67 |
|
| 68 |
return tokenizer, model, image_processor, context_len
|
| 69 |
|
| 70 |
# 将 builder 的加载函数替换为安全版
|
| 71 |
+
if _original_load_pretrained_model is not None:
|
| 72 |
+
builder.load_pretrained_model = safe_load_pretrained_model
|
| 73 |
|
| 74 |
+
# 同时替换 run_libra.load_model
|
| 75 |
def safe_load_model(model_path, model_base=None, model_name=None):
|
| 76 |
+
print('[INFO] Hook activated: safe_load_model()')
|
| 77 |
if model_name is None:
|
| 78 |
model_name = model_path
|
| 79 |
return safe_load_pretrained_model(model_path, model_base, model_name)
|
| 80 |
|
| 81 |
run_libra.load_model = safe_load_model
|
| 82 |
+
|
| 83 |
+
# 现在导入 CCD 与其他被 hook 的符号(导入放在 hook 之后以确保生效)
|
| 84 |
+
from ccd import ccd_eval, run_eval
|
| 85 |
+
from libra.eval.run_libra import load_model
|
| 86 |
|
| 87 |
# =========================================
|
| 88 |
# Global Configuration
|
|
|
|
| 387 |
|
| 388 |
|
| 389 |
# Log that Gradio is starting (helpful when stdout/stderr are captured)
|
| 390 |
+
# write startup log to local file in repository (avoid permission issues on Spaces)
|
| 391 |
try:
|
| 392 |
+
os.makedirs('logs', exist_ok=True)
|
| 393 |
+
with open('logs/callback.log', 'a', encoding='utf-8') as f:
|
| 394 |
f.write(f"\n=== GRADIO START ===\nstarted_at: {time.strftime('%Y-%m-%d %H:%M:%S')}\n\n")
|
| 395 |
except Exception:
|
| 396 |
pass
|
| 397 |
|
| 398 |
+
|
| 399 |
+
demo.launch()
|
| 400 |
|
| 401 |
|
| 402 |
if __name__ == "__main__":
|