|
|
import gradio as gr |
|
|
import torch |
|
|
from transformers import AutoModel, AutoTokenizer |
|
|
import spaces |
|
|
import os |
|
|
import tempfile |
|
|
from PIL import Image, ImageDraw |
|
|
import re |
|
|
|
|
|
|
|
|
print("Loading model and tokenizer...") |
|
|
model_name = "deepseek-ai/DeepSeek-OCR" |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
|
|
model = AutoModel.from_pretrained( |
|
|
model_name, |
|
|
_attn_implementation="flash_attention_2", |
|
|
trust_remote_code=True, |
|
|
use_safetensors=True, |
|
|
) |
|
|
model = model.eval() |
|
|
print("β
Model loaded successfully.") |
|
|
|
|
|
|
|
|
def find_result_image(path): |
|
|
for filename in os.listdir(path): |
|
|
if "grounding" in filename or "result" in filename: |
|
|
try: |
|
|
image_path = os.path.join(path, filename) |
|
|
return Image.open(image_path) |
|
|
except Exception as e: |
|
|
print(f"Error opening result image {filename}: {e}") |
|
|
return None |
|
|
|
|
|
|
|
|
@spaces.GPU |
|
|
def process_ocr_task(image, model_size, task_type, ref_text): |
|
|
""" |
|
|
Processes an image with DeepSeek-OCR for all supported tasks. |
|
|
Now draws ALL detected bounding boxes for ANY task. |
|
|
""" |
|
|
if image is None: |
|
|
return "Please upload an image first.", None |
|
|
|
|
|
print("π Moving model to GPU...") |
|
|
model_gpu = model.cuda().to(torch.bfloat16) |
|
|
print("β
Model is on GPU.") |
|
|
|
|
|
with tempfile.TemporaryDirectory() as output_path: |
|
|
|
|
|
if task_type == "π Free OCR": |
|
|
prompt = "<image>\nFree OCR." |
|
|
elif task_type == "π Convert to Markdown": |
|
|
prompt = "<image>\n<|grounding|>Convert the document to markdown." |
|
|
elif task_type == "π Parse Figure": |
|
|
prompt = "<image>\nParse the figure." |
|
|
else: |
|
|
prompt = "<image>\nFree OCR." |
|
|
|
|
|
temp_image_path = os.path.join(output_path, "temp_image.png") |
|
|
image.save(temp_image_path) |
|
|
|
|
|
|
|
|
size_configs = { |
|
|
"Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False}, |
|
|
"Small": {"base_size": 640, "image_size": 640, "crop_mode": False}, |
|
|
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False}, |
|
|
"Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False}, |
|
|
"Gundam (Recommended)": {"base_size": 1024, "image_size": 640, "crop_mode": True}, |
|
|
} |
|
|
config = size_configs.get(model_size, size_configs["Gundam (Recommended)"]) |
|
|
|
|
|
print(f"π Running inference with prompt: {prompt}") |
|
|
text_result = model_gpu.infer( |
|
|
tokenizer, |
|
|
prompt=prompt, |
|
|
image_file=temp_image_path, |
|
|
output_path=output_path, |
|
|
base_size=config["base_size"], |
|
|
image_size=config["image_size"], |
|
|
crop_mode=config["crop_mode"], |
|
|
save_results=True, |
|
|
test_compress=True, |
|
|
eval_mode=True, |
|
|
) |
|
|
|
|
|
print(f"====\nπ Text Result: {text_result}\n====") |
|
|
|
|
|
return text_result |
|
|
|
|
|
|
|
|
with gr.Blocks(title="π³DeepSeek-OCRπ³", theme=gr.themes.Soft()) as demo: |
|
|
gr.Markdown( |
|
|
""" |
|
|
# π³ Full Demo of DeepSeek-OCR π³ |
|
|
|
|
|
**π‘ How to use:** |
|
|
1. **Upload an image** using the upload box. |
|
|
2. Select a **Resolution**. `Gundam` is recommended for most documents. |
|
|
3. Choose a **Task Type**: |
|
|
- **π Free OCR**: Extracts raw text from the image. |
|
|
- **π Convert to Markdown**: Converts the document into Markdown, preserving structure. |
|
|
- **π Parse Figure**: Extracts structured data from charts and figures. |
|
|
""" |
|
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
image_input = gr.Image(type="pil", label="πΌοΈ Upload Image", sources=["upload", "clipboard"]) |
|
|
model_size = gr.Dropdown(choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"], value="Gundam (Recommended)", label="βοΈ Resolution Size") |
|
|
task_type = gr.Dropdown(choices=["π Free OCR", "π Convert to Markdown", "π Parse Figure"], value="π Convert to Markdown", label="π Task Type") |
|
|
submit_btn = gr.Button("Process Image", variant="primary") |
|
|
|
|
|
with gr.Column(scale=2): |
|
|
output_text = gr.Textbox(label="π Text Result", lines=15, show_copy_button=True) |
|
|
output_image = gr.Image(label="πΌοΈ Image Result (if any)", type="pil") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.queue(max_size=20).launch(share=True) |