Spaces:
Runtime error
Runtime error
cached_exmaple=False
Browse files
app.py
CHANGED
|
@@ -3,7 +3,8 @@
|
|
| 3 |
|
| 4 |
import glob
|
| 5 |
import gradio as gr
|
| 6 |
-
import os
|
|
|
|
| 7 |
|
| 8 |
import subprocess
|
| 9 |
|
|
@@ -70,13 +71,15 @@ def generate_image(seed, psi):
|
|
| 70 |
img = iface(seed, psi)
|
| 71 |
return img
|
| 72 |
|
|
|
|
| 73 |
random.seed(1993)
|
| 74 |
model_types = ['icon-filter', 'pifu', 'pamir']
|
| 75 |
-
examples = [[item, random.choice(model_types)] for item in random.sample(
|
|
|
|
| 76 |
|
| 77 |
with gr.Blocks() as demo:
|
| 78 |
gr.Markdown(description)
|
| 79 |
-
|
| 80 |
out_lst = []
|
| 81 |
with gr.Row():
|
| 82 |
with gr.Column():
|
|
@@ -86,7 +89,8 @@ with gr.Blocks() as demo:
|
|
| 86 |
0, 100, step=1, default=0, label='Seed (For Image Generation)')
|
| 87 |
psi = gr.inputs.Slider(
|
| 88 |
0, 2, step=0.05, default=0.7, label='Truncation psi (For Image Generation)')
|
| 89 |
-
radio_choice = gr.Radio(
|
|
|
|
| 90 |
inp = gr.Image(type="filepath", label="Input Image")
|
| 91 |
with gr.Row():
|
| 92 |
btn_sample = gr.Button("Sample Image")
|
|
@@ -94,29 +98,33 @@ with gr.Blocks() as demo:
|
|
| 94 |
|
| 95 |
gr.Examples(examples=examples,
|
| 96 |
inputs=[inp, radio_choice],
|
| 97 |
-
cache_examples=
|
| 98 |
fn=generate_model,
|
| 99 |
outputs=out_lst)
|
| 100 |
|
| 101 |
-
out_vid_download = gr.File(
|
|
|
|
| 102 |
|
| 103 |
with gr.Column():
|
| 104 |
-
overlap_inp = gr.Image(
|
|
|
|
| 105 |
out_smpl = gr.Model3D(
|
| 106 |
clear_color=[0.0, 0.0, 0.0, 0.0], label="SMPL")
|
| 107 |
out_smpl_download = gr.File(label="Download SMPL mesh")
|
| 108 |
out_smpl_npy_download = gr.File(label="Download SMPL params")
|
| 109 |
out_recon = gr.Model3D(
|
| 110 |
-
clear_color=[0.0, 0.0, 0.0, 0.0], label="
|
| 111 |
out_recon_download = gr.File(label="Download clothed human mesh")
|
| 112 |
out_final = gr.Model3D(
|
| 113 |
-
clear_color=[0.0, 0.0, 0.0, 0.0], label="
|
| 114 |
-
out_final_download = gr.File(
|
|
|
|
| 115 |
|
| 116 |
out_lst = [out_smpl, out_smpl_download, out_smpl_npy_download, out_recon, out_recon_download,
|
| 117 |
out_final, out_final_download, out_vid_download, overlap_inp]
|
| 118 |
|
| 119 |
-
btn_submit.click(fn=generate_model, inputs=[
|
|
|
|
| 120 |
btn_sample.click(fn=generate_image, inputs=[seed, psi], outputs=inp)
|
| 121 |
|
| 122 |
if __name__ == "__main__":
|
|
|
|
| 3 |
|
| 4 |
import glob
|
| 5 |
import gradio as gr
|
| 6 |
+
import os
|
| 7 |
+
import random
|
| 8 |
|
| 9 |
import subprocess
|
| 10 |
|
|
|
|
| 71 |
img = iface(seed, psi)
|
| 72 |
return img
|
| 73 |
|
| 74 |
+
|
| 75 |
random.seed(1993)
|
| 76 |
model_types = ['icon-filter', 'pifu', 'pamir']
|
| 77 |
+
examples = [[item, random.choice(model_types)] for item in random.sample(
|
| 78 |
+
sorted(glob.glob('examples/*.png')), 8)]
|
| 79 |
|
| 80 |
with gr.Blocks() as demo:
|
| 81 |
gr.Markdown(description)
|
| 82 |
+
|
| 83 |
out_lst = []
|
| 84 |
with gr.Row():
|
| 85 |
with gr.Column():
|
|
|
|
| 89 |
0, 100, step=1, default=0, label='Seed (For Image Generation)')
|
| 90 |
psi = gr.inputs.Slider(
|
| 91 |
0, 2, step=0.05, default=0.7, label='Truncation psi (For Image Generation)')
|
| 92 |
+
radio_choice = gr.Radio(
|
| 93 |
+
model_types, label='Method (For Reconstruction)', value='icon-filter')
|
| 94 |
inp = gr.Image(type="filepath", label="Input Image")
|
| 95 |
with gr.Row():
|
| 96 |
btn_sample = gr.Button("Sample Image")
|
|
|
|
| 98 |
|
| 99 |
gr.Examples(examples=examples,
|
| 100 |
inputs=[inp, radio_choice],
|
| 101 |
+
cache_examples=False,
|
| 102 |
fn=generate_model,
|
| 103 |
outputs=out_lst)
|
| 104 |
|
| 105 |
+
out_vid_download = gr.File(
|
| 106 |
+
label="Download Video, welcome share on Twitter with #ICON")
|
| 107 |
|
| 108 |
with gr.Column():
|
| 109 |
+
overlap_inp = gr.Image(
|
| 110 |
+
type="filepath", label="Image Normal Overlap")
|
| 111 |
out_smpl = gr.Model3D(
|
| 112 |
clear_color=[0.0, 0.0, 0.0, 0.0], label="SMPL")
|
| 113 |
out_smpl_download = gr.File(label="Download SMPL mesh")
|
| 114 |
out_smpl_npy_download = gr.File(label="Download SMPL params")
|
| 115 |
out_recon = gr.Model3D(
|
| 116 |
+
clear_color=[0.0, 0.0, 0.0, 0.0], label="Recon")
|
| 117 |
out_recon_download = gr.File(label="Download clothed human mesh")
|
| 118 |
out_final = gr.Model3D(
|
| 119 |
+
clear_color=[0.0, 0.0, 0.0, 0.0], label="Refined Recon")
|
| 120 |
+
out_final_download = gr.File(
|
| 121 |
+
label="Download refined clothed human mesh")
|
| 122 |
|
| 123 |
out_lst = [out_smpl, out_smpl_download, out_smpl_npy_download, out_recon, out_recon_download,
|
| 124 |
out_final, out_final_download, out_vid_download, overlap_inp]
|
| 125 |
|
| 126 |
+
btn_submit.click(fn=generate_model, inputs=[
|
| 127 |
+
inp, radio_choice], outputs=out_lst)
|
| 128 |
btn_sample.click(fn=generate_image, inputs=[seed, psi], outputs=inp)
|
| 129 |
|
| 130 |
if __name__ == "__main__":
|