Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
|
| 5 |
+
# Model name
|
| 6 |
+
model_name = "deepseek-ai/DeepSeek-R1"
|
| 7 |
+
|
| 8 |
+
# Load tokenizer
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 10 |
+
|
| 11 |
+
# Load model with quantization
|
| 12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
+
model_name,
|
| 14 |
+
trust_remote_code=True
|
| 15 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
|
| 17 |
+
# Define the text generation function
|
| 18 |
+
def generate_response(prompt):
|
| 19 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 20 |
+
with torch.no_grad():
|
| 21 |
+
output = model.generate(**inputs, max_length=150)
|
| 22 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
| 23 |
+
|
| 24 |
+
# Set up Gradio UI
|
| 25 |
+
interface = gr.Interface(
|
| 26 |
+
fn=generate_response,
|
| 27 |
+
inputs=gr.Textbox(label="Enter your prompt"),
|
| 28 |
+
outputs=gr.Textbox(label="AI Response"),
|
| 29 |
+
title="DeepSeek-R1 Chatbot",
|
| 30 |
+
description="Enter a prompt and receive a response from DeepSeek-R1."
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# Launch the app
|
| 34 |
+
interface.launch()
|