Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import requests
|
| 3 |
from bs4 import BeautifulSoup, Comment
|
|
|
|
| 4 |
from llama_cpp import Llama
|
| 5 |
|
| 6 |
-
# Function to extract visible text from a webpage
|
| 7 |
def tag_visible(element):
|
| 8 |
if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']:
|
| 9 |
return False
|
|
@@ -14,7 +14,8 @@ def tag_visible(element):
|
|
| 14 |
def get_text_from_url(url):
|
| 15 |
response = requests.get(url, timeout=10)
|
| 16 |
soup = BeautifulSoup(response.text, 'html.parser')
|
| 17 |
-
|
|
|
|
| 18 |
visible_texts = filter(tag_visible, texts)
|
| 19 |
return " ".join(t.strip() for t in visible_texts)
|
| 20 |
|
|
@@ -26,35 +27,35 @@ extensions = ["", "pmrf-profile-page"]
|
|
| 26 |
for ext in extensions:
|
| 27 |
try:
|
| 28 |
full_text = get_text_from_url(homepage_url + ext)
|
| 29 |
-
truncated_text = full_text[:2000] #
|
| 30 |
text_list.append(truncated_text)
|
| 31 |
except Exception as e:
|
| 32 |
text_list.append(f"Error fetching {homepage_url+ext}: {str(e)}")
|
| 33 |
|
| 34 |
CONTEXT = " ".join(text_list)
|
| 35 |
|
| 36 |
-
#
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
# Function to answer queries
|
| 40 |
def answer_query(query):
|
| 41 |
prompt = (
|
| 42 |
-
"You are an AI chatbot answering queries based on
|
| 43 |
-
"
|
| 44 |
f"Context: {CONTEXT}\n\nUser: {query}\nAI:"
|
| 45 |
)
|
| 46 |
-
|
| 47 |
response = llm(prompt, max_tokens=50, stop=["\nUser:", "\nAI:"], echo=False)
|
| 48 |
-
|
| 49 |
return response["choices"][0]["text"].strip()
|
| 50 |
|
| 51 |
-
# Gradio Interface
|
| 52 |
iface = gr.Interface(
|
| 53 |
fn=answer_query,
|
| 54 |
-
inputs=gr.Textbox(lines=2, placeholder="Ask a question about Abhilash Nandy..."),
|
| 55 |
outputs="text",
|
| 56 |
title="Homepage QA Chatbot",
|
| 57 |
-
description="
|
| 58 |
)
|
| 59 |
|
| 60 |
if __name__ == '__main__':
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import requests
|
| 3 |
from bs4 import BeautifulSoup, Comment
|
| 4 |
+
import os
|
| 5 |
from llama_cpp import Llama
|
| 6 |
|
|
|
|
| 7 |
def tag_visible(element):
|
| 8 |
if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']:
|
| 9 |
return False
|
|
|
|
| 14 |
def get_text_from_url(url):
|
| 15 |
response = requests.get(url, timeout=10)
|
| 16 |
soup = BeautifulSoup(response.text, 'html.parser')
|
| 17 |
+
# Use 'string=True' instead of deprecated 'text=True'
|
| 18 |
+
texts = soup.find_all(string=True)
|
| 19 |
visible_texts = filter(tag_visible, texts)
|
| 20 |
return " ".join(t.strip() for t in visible_texts)
|
| 21 |
|
|
|
|
| 27 |
for ext in extensions:
|
| 28 |
try:
|
| 29 |
full_text = get_text_from_url(homepage_url + ext)
|
| 30 |
+
truncated_text = full_text[:2000] # Adjust truncation length as needed
|
| 31 |
text_list.append(truncated_text)
|
| 32 |
except Exception as e:
|
| 33 |
text_list.append(f"Error fetching {homepage_url+ext}: {str(e)}")
|
| 34 |
|
| 35 |
CONTEXT = " ".join(text_list)
|
| 36 |
|
| 37 |
+
# Set the model path. Make sure the model file is downloaded and placed in the 'models' directory.
|
| 38 |
+
model_path = "models/mistral-7b-instruct-v0.1.Q4_K_M.gguf"
|
| 39 |
+
if not os.path.exists(model_path):
|
| 40 |
+
raise ValueError(f"Model file not found at {model_path}. Please download the model file and place it in the 'models' folder.")
|
| 41 |
+
|
| 42 |
+
llm = Llama(model_path=model_path, n_ctx=4096, n_threads=6, verbose=False)
|
| 43 |
|
|
|
|
| 44 |
def answer_query(query):
|
| 45 |
prompt = (
|
| 46 |
+
"You are an AI chatbot answering queries based on Abhilash Nandy's homepage. "
|
| 47 |
+
"Provide concise answers (under 30 words).\n\n"
|
| 48 |
f"Context: {CONTEXT}\n\nUser: {query}\nAI:"
|
| 49 |
)
|
|
|
|
| 50 |
response = llm(prompt, max_tokens=50, stop=["\nUser:", "\nAI:"], echo=False)
|
|
|
|
| 51 |
return response["choices"][0]["text"].strip()
|
| 52 |
|
|
|
|
| 53 |
iface = gr.Interface(
|
| 54 |
fn=answer_query,
|
| 55 |
+
inputs=gr.Textbox(lines=2, placeholder="Ask a question about Abhilash Nandy's homepage..."),
|
| 56 |
outputs="text",
|
| 57 |
title="Homepage QA Chatbot",
|
| 58 |
+
description="A chatbot answering queries based on homepage context."
|
| 59 |
)
|
| 60 |
|
| 61 |
if __name__ == '__main__':
|