import spacy import gradio as gr def make_ent_dict(list): ent_dict = { 'ORG': '', 'PERSON': '', 'GPE': '', 'DATE': '', 'TIME': '', 'MONEY': '', 'PERCENT': '', 'QUANTITY': '', 'PRODUCT': '', } for item in list: if item[0] in ent_dict.keys(): ent_dict[item[0]] = item[1] return ent_dict def get_named_entity(text): nlp = spacy.load("en_core_web_sm") doc = nlp(text) ent_list = [(ent.label_, ent.text) for ent in doc.ents] return make_ent_dict(ent_list) iface = gr.Interface(fn=get_named_entity, inputs="text", outputs="text") iface.launch(inline=False)