Andres Johan Florez Gonzalez
commited on
Upload functional_wlan_design_gradio.py
Browse files- functional_wlan_design_gradio.py +372 -0
functional_wlan_design_gradio.py
ADDED
|
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Funcional WLAN_design_gradio.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1MIfY3UkK4eSXOiPx3gtMSPoZMtnyJxux
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
from google.colab import drive
|
| 11 |
+
drive.mount('/content/drive')
|
| 12 |
+
|
| 13 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 14 |
+
# %%capture
|
| 15 |
+
# !pip install gradio
|
| 16 |
+
|
| 17 |
+
import gradio as gr
|
| 18 |
+
from PIL import Image
|
| 19 |
+
import os
|
| 20 |
+
from tensorflow.keras.models import load_model
|
| 21 |
+
import numpy as np
|
| 22 |
+
import matplotlib.pyplot as plt
|
| 23 |
+
from matplotlib.colors import Normalize
|
| 24 |
+
from io import BytesIO
|
| 25 |
+
|
| 26 |
+
# Images path
|
| 27 |
+
path_main = '/content/drive/Othercomputers/False-2-Tesis-Maestria /Phase-3-thesis/'
|
| 28 |
+
images_file = path_main + 'Scennarios init/Scennarios W'
|
| 29 |
+
|
| 30 |
+
# Load DL models
|
| 31 |
+
modelo_1ap = load_model(path_main + 'Models/SINR-2APs/modelo_1ap_app.keras')
|
| 32 |
+
modelo_2ap = load_model(path_main + 'Models/SINR-2APs/modelo_2ap_app.keras')
|
| 33 |
+
|
| 34 |
+
plt.rc('font', family='Times New Roman')
|
| 35 |
+
fontsize_t = 15
|
| 36 |
+
|
| 37 |
+
def coordinates_process(texto):
|
| 38 |
+
coordinates = texto.split("), ")
|
| 39 |
+
|
| 40 |
+
resultado = []
|
| 41 |
+
for coord in coordinates:
|
| 42 |
+
try:
|
| 43 |
+
coord = coord.replace("(", "").replace(")", "")
|
| 44 |
+
x, y = map(int, coord.split(","))
|
| 45 |
+
# Validate range
|
| 46 |
+
if 0 <= x <= 255 and 0 <= y <= 255:
|
| 47 |
+
resultado.append((x, y))
|
| 48 |
+
else:
|
| 49 |
+
return False
|
| 50 |
+
except ValueError:
|
| 51 |
+
return False
|
| 52 |
+
|
| 53 |
+
while len(resultado) < 3:
|
| 54 |
+
resultado.append((0, 0))
|
| 55 |
+
|
| 56 |
+
return resultado
|
| 57 |
+
|
| 58 |
+
# plan images path
|
| 59 |
+
def plan_images_list():
|
| 60 |
+
return [file_ for file_ in os.listdir(images_file) if file_.endswith((".JPG", ".jpg", ".jpeg", ".png"))]
|
| 61 |
+
|
| 62 |
+
# Valdate inputs
|
| 63 |
+
def validate_input(value):
|
| 64 |
+
if value == "" or value is None:
|
| 65 |
+
return 0
|
| 66 |
+
elif value >= 0 or value <= 2:
|
| 67 |
+
return value
|
| 68 |
+
|
| 69 |
+
# MAIN FUNCTION ****************************************************************
|
| 70 |
+
def main_function(plan_name, apch1, apch6, apch11, coord1, coord6, coord11):
|
| 71 |
+
image_plan_path = os.path.join(images_file, plan_name)
|
| 72 |
+
imagen1 = Image.open(image_plan_path)
|
| 73 |
+
|
| 74 |
+
# No negative number as input
|
| 75 |
+
if not (0 <= apch1 <= 2):
|
| 76 |
+
return False
|
| 77 |
+
if not (0 <= apch6 <= 2):
|
| 78 |
+
return False
|
| 79 |
+
if not (0 <= apch11 <= 2):
|
| 80 |
+
return False
|
| 81 |
+
|
| 82 |
+
# Some variables init
|
| 83 |
+
deep_count = 0
|
| 84 |
+
deep_coverage = []
|
| 85 |
+
channels = [1, 6, 11]
|
| 86 |
+
num_APs = np.zeros(len(channels), dtype=int)
|
| 87 |
+
num_APs[0] = apch1
|
| 88 |
+
num_APs[1] = apch6
|
| 89 |
+
num_APs[2] = apch11
|
| 90 |
+
dimension = 256
|
| 91 |
+
aps_chs = np.zeros((dimension, dimension, len(channels)))
|
| 92 |
+
|
| 93 |
+
# Load plan
|
| 94 |
+
numero = plan_name[:1]
|
| 95 |
+
plan_in = np.array(Image.open(f"{path_main}Scennarios init/Scennarios B/{numero}.png")) / 255
|
| 96 |
+
|
| 97 |
+
coords = [coord1, coord6, coord11]
|
| 98 |
+
for att, channel in enumerate(channels):
|
| 99 |
+
if num_APs[att] > 0:
|
| 100 |
+
coordinates = coordinates_process(coords[att])
|
| 101 |
+
for x, y in coordinates:
|
| 102 |
+
if x != 0 and y != 0:
|
| 103 |
+
aps_chs[int(y), int(x), att] = 1
|
| 104 |
+
|
| 105 |
+
# Coverage process
|
| 106 |
+
deep_coverage = []
|
| 107 |
+
ap_images = []
|
| 108 |
+
layer_indices = []
|
| 109 |
+
imagencober = {}
|
| 110 |
+
for k in range(len(channels)):
|
| 111 |
+
capa = aps_chs[:, :, k]
|
| 112 |
+
filas, columnas = np.where(capa == 1)
|
| 113 |
+
|
| 114 |
+
if len(filas) == 2:
|
| 115 |
+
# For 2 AP
|
| 116 |
+
deep_count += 1
|
| 117 |
+
layer_1 = np.zeros_like(capa)
|
| 118 |
+
layer_2 = np.zeros_like(capa)
|
| 119 |
+
layer_1[filas[0], columnas[0]] = 1
|
| 120 |
+
layer_2[filas[1], columnas[1]] = 1
|
| 121 |
+
|
| 122 |
+
datos_entrada = np.stack([plan_in, layer_1, layer_2], axis=-1)
|
| 123 |
+
prediction = modelo_2ap.predict(datos_entrada[np.newaxis, ...])[0]
|
| 124 |
+
|
| 125 |
+
elif len(filas) == 1:
|
| 126 |
+
# For 1 AP
|
| 127 |
+
deep_count += 1
|
| 128 |
+
layer_1 = np.zeros_like(capa)
|
| 129 |
+
layer_1[filas[0], columnas[0]] = 1
|
| 130 |
+
|
| 131 |
+
datos_entrada = np.stack([plan_in, layer_1], axis=-1)
|
| 132 |
+
prediction = modelo_1ap.predict(datos_entrada[np.newaxis, ...])[0]
|
| 133 |
+
|
| 134 |
+
else:
|
| 135 |
+
# Whitout AP
|
| 136 |
+
prediction = np.zeros((dimension,dimension,1))
|
| 137 |
+
|
| 138 |
+
# print(prediction.shape)
|
| 139 |
+
deep_coverage.append(prediction)
|
| 140 |
+
prediction_rgb = np.squeeze((Normalize()(prediction)))
|
| 141 |
+
ap_images.append(prediction_rgb) # Guardar la imagen de cobertura del AP
|
| 142 |
+
|
| 143 |
+
if np.all(prediction == 0):
|
| 144 |
+
plt.imshow(prediction_rgb)
|
| 145 |
+
plt.title('No coverage', fontsize=fontsize_t + 2, family='Times New Roman')
|
| 146 |
+
plt.axis("off")
|
| 147 |
+
else:
|
| 148 |
+
plt.imshow(prediction_rgb, cmap='jet')
|
| 149 |
+
cbar = plt.colorbar(ticks=np.linspace(0, 1, num=6),)
|
| 150 |
+
cbar.set_label('SINR [dB]', fontsize=fontsize_t, fontname='Times New Roman')
|
| 151 |
+
cbar.set_ticklabels(['-3.01', '20.29', '43.60', '66.90', '90.20', '113.51'])
|
| 152 |
+
cbar.ax.tick_params(labelsize=fontsize_t, labelfontfamily = 'Times New Roman')
|
| 153 |
+
plt.axis("off")
|
| 154 |
+
|
| 155 |
+
# Save the plot to a buffer
|
| 156 |
+
buf = BytesIO()
|
| 157 |
+
plt.savefig(buf, format='png')
|
| 158 |
+
buf.seek(0)
|
| 159 |
+
plt.close()
|
| 160 |
+
|
| 161 |
+
# Convert buffer to an image
|
| 162 |
+
imagencober[k] = Image.open(buf)
|
| 163 |
+
|
| 164 |
+
# Cell map estimation
|
| 165 |
+
layer_indices.append(np.argmax(prediction, axis=0))
|
| 166 |
+
|
| 167 |
+
# Final coverage
|
| 168 |
+
if deep_coverage:
|
| 169 |
+
deep_coverage = np.array(deep_coverage)
|
| 170 |
+
nor_matrix = np.max(deep_coverage, axis=0)
|
| 171 |
+
celdas = np.argmax(deep_coverage, axis=0)
|
| 172 |
+
|
| 173 |
+
resultado_rgb = np.squeeze((Normalize()(nor_matrix)))
|
| 174 |
+
|
| 175 |
+
plt.imshow(resultado_rgb, cmap='jet')
|
| 176 |
+
cbar = plt.colorbar(ticks=np.linspace(0, 1, num=6))
|
| 177 |
+
cbar.set_label('SINR [dB]', fontsize=fontsize_t, fontname='Times New Roman')
|
| 178 |
+
cbar.set_ticklabels(['-3.01', '20.29', '43.60', '66.90', '90.20', '113.51'])
|
| 179 |
+
cbar.ax.tick_params(labelsize=fontsize_t, labelfontfamily = 'Times New Roman')
|
| 180 |
+
plt.axis("off")
|
| 181 |
+
|
| 182 |
+
# Save the plot to a buffer
|
| 183 |
+
buf = BytesIO()
|
| 184 |
+
plt.savefig(buf, format='png')
|
| 185 |
+
buf.seek(0)
|
| 186 |
+
plt.close()
|
| 187 |
+
|
| 188 |
+
# Convert buffer to an image
|
| 189 |
+
imagen3 = Image.open(buf)
|
| 190 |
+
|
| 191 |
+
if num_APs[0] > 0 and num_APs[1] > 0 and num_APs[2] > 0:
|
| 192 |
+
cmap = plt.cm.colors.ListedColormap(['blue', 'red', 'green'])
|
| 193 |
+
plt.imshow(celdas, cmap=cmap)
|
| 194 |
+
cbar = plt.colorbar()
|
| 195 |
+
cbar.set_ticks([0, 1, 2])
|
| 196 |
+
cbar.set_ticklabels(['1', '6', '11'])
|
| 197 |
+
cbar.set_label('Cell ID', fontsize=fontsize_t, fontname='Times New Roman')
|
| 198 |
+
cbar.ax.tick_params(labelsize=fontsize_t, labelfontfamily = 'Times New Roman')
|
| 199 |
+
plt.axis("off")
|
| 200 |
+
|
| 201 |
+
# Save the plot to a buffer
|
| 202 |
+
buf = BytesIO()
|
| 203 |
+
plt.savefig(buf, format='png')
|
| 204 |
+
buf.seek(0)
|
| 205 |
+
plt.close()
|
| 206 |
+
|
| 207 |
+
# Convert buffer to an image
|
| 208 |
+
imagen4 = Image.open(buf)
|
| 209 |
+
|
| 210 |
+
elif num_APs[0] > 0 and num_APs[1] > 0:
|
| 211 |
+
cmap = plt.cm.colors.ListedColormap(['blue', 'red'])
|
| 212 |
+
plt.imshow(celdas, cmap=cmap)
|
| 213 |
+
cbar = plt.colorbar()
|
| 214 |
+
cbar.set_ticks([0, 1])
|
| 215 |
+
cbar.set_ticklabels(['1', '6'])
|
| 216 |
+
cbar.set_label('Cell ID', fontsize=fontsize_t, fontname='Times New Roman')
|
| 217 |
+
cbar.ax.tick_params(labelsize=fontsize_t, labelfontfamily = 'Times New Roman')
|
| 218 |
+
plt.axis("off")
|
| 219 |
+
|
| 220 |
+
# Save the plot to a buffer
|
| 221 |
+
buf = BytesIO()
|
| 222 |
+
plt.savefig(buf, format='png')
|
| 223 |
+
buf.seek(0)
|
| 224 |
+
plt.close()
|
| 225 |
+
|
| 226 |
+
# Convert buffer to an image
|
| 227 |
+
imagen4 = Image.open(buf)
|
| 228 |
+
|
| 229 |
+
elif num_APs[0] > 0 and num_APs[2] > 0:
|
| 230 |
+
cmap = plt.cm.colors.ListedColormap(['blue', 'red'])
|
| 231 |
+
plt.imshow(celdas, cmap=cmap)
|
| 232 |
+
cbar = plt.colorbar()
|
| 233 |
+
cbar.set_ticks([0, 1])
|
| 234 |
+
cbar.set_ticklabels(['1', '11'])
|
| 235 |
+
cbar.set_label('Cell ID', fontsize=fontsize_t, fontname='Times New Roman')
|
| 236 |
+
cbar.ax.tick_params(labelsize=fontsize_t, labelfontfamily = 'Times New Roman')
|
| 237 |
+
plt.axis("off")
|
| 238 |
+
|
| 239 |
+
# Save the plot to a buffer
|
| 240 |
+
buf = BytesIO()
|
| 241 |
+
plt.savefig(buf, format='png')
|
| 242 |
+
buf.seek(0)
|
| 243 |
+
plt.close()
|
| 244 |
+
|
| 245 |
+
# Convert buffer to an image
|
| 246 |
+
imagen4 = Image.open(buf)
|
| 247 |
+
|
| 248 |
+
elif num_APs[1] > 0 and num_APs[2] > 0:
|
| 249 |
+
cmap = plt.cm.colors.ListedColormap(['blue', 'red'])
|
| 250 |
+
plt.imshow(celdas, cmap=cmap)
|
| 251 |
+
cbar = plt.colorbar()
|
| 252 |
+
cbar.set_ticks([0, 1])
|
| 253 |
+
cbar.set_ticklabels(['6', '11'])
|
| 254 |
+
cbar.set_label('Cell ID', fontsize=fontsize_t, fontname='Times New Roman')
|
| 255 |
+
cbar.ax.tick_params(labelsize=fontsize_t, labelfontfamily = 'Times New Roman')
|
| 256 |
+
plt.axis("off")
|
| 257 |
+
|
| 258 |
+
# Save the plot to a buffer
|
| 259 |
+
buf = BytesIO()
|
| 260 |
+
plt.savefig(buf, format='png')
|
| 261 |
+
buf.seek(0)
|
| 262 |
+
plt.close()
|
| 263 |
+
|
| 264 |
+
# Convert buffer to an image
|
| 265 |
+
imagen4 = Image.open(buf)
|
| 266 |
+
|
| 267 |
+
else:
|
| 268 |
+
cmap = plt.cm.colors.ListedColormap(['blue'])
|
| 269 |
+
plt.imshow(celdas, cmap=cmap)
|
| 270 |
+
cbar = plt.colorbar()
|
| 271 |
+
cbar.set_ticks([0])
|
| 272 |
+
cbar.set_ticklabels(['1'])
|
| 273 |
+
cbar.set_label('Cell ID', fontsize=fontsize_t, fontname='Times New Roman')
|
| 274 |
+
cbar.ax.tick_params(labelsize=fontsize_t, labelfontfamily = 'Times New Roman')
|
| 275 |
+
plt.axis("off")
|
| 276 |
+
|
| 277 |
+
# Save the plot to a buffer
|
| 278 |
+
buf = BytesIO()
|
| 279 |
+
plt.savefig(buf, format='png')
|
| 280 |
+
buf.seek(0)
|
| 281 |
+
plt.close()
|
| 282 |
+
|
| 283 |
+
# Convert buffer to an image
|
| 284 |
+
imagen4 = Image.open(buf)
|
| 285 |
+
|
| 286 |
+
return [imagencober[0], imagencober[1], imagencober[2], imagen3, imagen4]
|
| 287 |
+
|
| 288 |
+
# plan visualization
|
| 289 |
+
def load_plan_vi(mapa_seleccionado):
|
| 290 |
+
|
| 291 |
+
image_plan_path1 = os.path.join(images_file, mapa_seleccionado)
|
| 292 |
+
plan_image = Image.open(image_plan_path1)
|
| 293 |
+
|
| 294 |
+
plan_n = np.array(plan_image.convert('RGB'))
|
| 295 |
+
plt.figure(figsize=(3, 3))
|
| 296 |
+
plt.imshow(plan_n)
|
| 297 |
+
plt.xticks(np.arange(0, 256, 50))
|
| 298 |
+
plt.yticks(np.arange(0, 256, 50))
|
| 299 |
+
|
| 300 |
+
# Save the plot to a buffer
|
| 301 |
+
buf = BytesIO()
|
| 302 |
+
plt.savefig(buf, format='png')
|
| 303 |
+
buf.seek(0)
|
| 304 |
+
plt.close()
|
| 305 |
+
|
| 306 |
+
# Convert buffer to an image
|
| 307 |
+
plan_im = Image.open(buf)
|
| 308 |
+
|
| 309 |
+
return plan_im
|
| 310 |
+
|
| 311 |
+
with gr.Blocks() as demo:
|
| 312 |
+
|
| 313 |
+
gr.Markdown("""
|
| 314 |
+
## Fast Radio Propagation Prediction in WLANs Using Deep Learning
|
| 315 |
+
This app use deep learning models to radio map estimation (RME). RME entails estimating the received RF power based on spatial information maps.
|
| 316 |
+
|
| 317 |
+
Instructions for use:
|
| 318 |
+
|
| 319 |
+
- A predefined list of indoor floor plans is available for use.
|
| 320 |
+
- A maximum of (255,255) pixels is allowed for image size.
|
| 321 |
+
- Negative numbers are not allowed.
|
| 322 |
+
- The established format for the coordinates of each access point (AP) must be maintained.
|
| 323 |
+
- A maximum of 2 APs are allowed per channel.
|
| 324 |
+
""")
|
| 325 |
+
|
| 326 |
+
with gr.Row():
|
| 327 |
+
# Input left panel
|
| 328 |
+
with gr.Column(scale=1): # Scale to resize
|
| 329 |
+
map_dropdown = gr.Dropdown(choices=plan_images_list(), label="Select indoor plan")
|
| 330 |
+
ch1_input = gr.Number(label="APs CH 1")
|
| 331 |
+
ch6_input = gr.Number(label="APs CH 6")
|
| 332 |
+
ch11_input = gr.Number(label="APs CH 11")
|
| 333 |
+
coords_ch1_input = gr.Textbox(label="Coordinate CH 1", placeholder="Format: (x1, y1), (x2, y2)")
|
| 334 |
+
coords_ch6_input = gr.Textbox(label="Coordinate CH 6", placeholder="Format: (x1, y1), (x2, y2)")
|
| 335 |
+
coords_ch11_input = gr.Textbox(label="Coordinate CH 11", placeholder="Format: (x1, y1), (x2, y2)")
|
| 336 |
+
button1 = gr.Button("Load plan")
|
| 337 |
+
button2 = gr.Button("Predict coverage")
|
| 338 |
+
|
| 339 |
+
# Rigth panel
|
| 340 |
+
a_images = 320 # Size putput images
|
| 341 |
+
|
| 342 |
+
with gr.Column(scale=3):
|
| 343 |
+
first_image_output = gr.Image(label="plan image", height=a_images, width=a_images)
|
| 344 |
+
# with gr.Row():
|
| 345 |
+
with gr.Row():
|
| 346 |
+
image_ch1 = gr.Image(label="CH 1 coverage", height=a_images, width=a_images)
|
| 347 |
+
image_ch6 = gr.Image(label="CH 6 coverage", height=a_images, width=a_images)
|
| 348 |
+
image_ch11 = gr.Image(label="CH 11 coverage", height=a_images, width=a_images)
|
| 349 |
+
|
| 350 |
+
with gr.Row():
|
| 351 |
+
image_cover_final = gr.Image(label="Final coverage", height=a_images, width=a_images)
|
| 352 |
+
image_cells = gr.Image(label="Cells coverage", height=a_images, width=a_images)
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
# Buttons
|
| 356 |
+
button1.click(load_plan_vi, inputs=[map_dropdown], outputs=first_image_output)
|
| 357 |
+
button2.click(
|
| 358 |
+
lambda map_dropdown, ch1, ch6, ch11, coords1, coords6, coords11: main_function(
|
| 359 |
+
map_dropdown,
|
| 360 |
+
validate_input(ch1),
|
| 361 |
+
validate_input(ch6),
|
| 362 |
+
validate_input(ch11),
|
| 363 |
+
coords1,
|
| 364 |
+
coords6,
|
| 365 |
+
coords11,
|
| 366 |
+
),
|
| 367 |
+
inputs=[map_dropdown, ch1_input, ch6_input, ch11_input, coords_ch1_input, coords_ch6_input, coords_ch11_input],
|
| 368 |
+
outputs=[image_ch1, image_ch6, image_ch11, image_cover_final, image_cells]
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
demo.launch()
|