Commit
·
1ef58ee
1
Parent(s):
1c2b5d0
feat: Initial commit
Browse files- .gitignore +1 -0
- app.py +370 -0
- requirements.txt +69 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
.venv
|
app.py
ADDED
|
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Script to produce radial plots."""
|
| 2 |
+
|
| 3 |
+
from functools import partial
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
+
import json
|
| 6 |
+
import numpy as np
|
| 7 |
+
from collections import defaultdict
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from pydantic import BaseModel
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import requests
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Task(BaseModel):
|
| 15 |
+
"""Class to hold task information."""
|
| 16 |
+
|
| 17 |
+
name: str
|
| 18 |
+
metric: str
|
| 19 |
+
|
| 20 |
+
def __hash__(self):
|
| 21 |
+
return hash(self.name)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class Language(BaseModel):
|
| 25 |
+
"""Class to hold language information."""
|
| 26 |
+
|
| 27 |
+
code: str
|
| 28 |
+
name: str
|
| 29 |
+
|
| 30 |
+
def __hash__(self):
|
| 31 |
+
return hash(self.code)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class Dataset(BaseModel):
|
| 35 |
+
"""Class to hold dataset information."""
|
| 36 |
+
|
| 37 |
+
name: str
|
| 38 |
+
language: Language
|
| 39 |
+
task: Task
|
| 40 |
+
|
| 41 |
+
def __hash__(self):
|
| 42 |
+
return hash(self.name)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
TEXT_CLASSIFICATION = Task(name="text classification", metric="mcc")
|
| 46 |
+
INFORMATION_EXTRACTION = Task(name="information extraction", metric="micro_f1_no_misc")
|
| 47 |
+
GRAMMAR = Task(name="grammar", metric="mcc")
|
| 48 |
+
QUESTION_ANSWERING = Task(name="question answering", metric="em")
|
| 49 |
+
SUMMARISATION = Task(name="summarisation", metric="bertscore")
|
| 50 |
+
KNOWLEDGE = Task(name="knowledge", metric="mcc")
|
| 51 |
+
REASONING = Task(name="reasoning", metric="mcc")
|
| 52 |
+
ALL_TASKS = [obj for obj in globals().values() if isinstance(obj, Task)]
|
| 53 |
+
|
| 54 |
+
DANISH = Language(code="da", name="Danish")
|
| 55 |
+
NORWEGIAN = Language(code="no", name="Norwegian")
|
| 56 |
+
SWEDISH = Language(code="sv", name="Swedish")
|
| 57 |
+
ICELANDIC = Language(code="is", name="Icelandic")
|
| 58 |
+
FAROESE = Language(code="fo", name="Faroese")
|
| 59 |
+
GERMAN = Language(code="de", name="German")
|
| 60 |
+
DUTCH = Language(code="nl", name="Dutch")
|
| 61 |
+
ENGLISH = Language(code="en", name="English")
|
| 62 |
+
ALL_LANGUAGES = {
|
| 63 |
+
obj.name: obj for obj in globals().values() if isinstance(obj, Language)
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
DATASETS = [
|
| 67 |
+
Dataset(name="swerec", language=SWEDISH, task=TEXT_CLASSIFICATION),
|
| 68 |
+
Dataset(name="angry-tweets", language=DANISH, task=TEXT_CLASSIFICATION),
|
| 69 |
+
Dataset(name="norec", language=NORWEGIAN, task=TEXT_CLASSIFICATION),
|
| 70 |
+
Dataset(name="sb10k", language=GERMAN, task=TEXT_CLASSIFICATION),
|
| 71 |
+
Dataset(name="dutch-social", language=DUTCH, task=TEXT_CLASSIFICATION),
|
| 72 |
+
Dataset(name="sst5", language=ENGLISH, task=TEXT_CLASSIFICATION),
|
| 73 |
+
Dataset(name="suc3", language=SWEDISH, task=INFORMATION_EXTRACTION),
|
| 74 |
+
Dataset(name="dansk", language=DANISH, task=INFORMATION_EXTRACTION),
|
| 75 |
+
Dataset(name="norne-nb", language=NORWEGIAN, task=INFORMATION_EXTRACTION),
|
| 76 |
+
Dataset(name="norne-nn", language=NORWEGIAN, task=INFORMATION_EXTRACTION),
|
| 77 |
+
Dataset(name="mim-gold-ner", language=ICELANDIC, task=INFORMATION_EXTRACTION),
|
| 78 |
+
Dataset(name="fone", language=FAROESE, task=INFORMATION_EXTRACTION),
|
| 79 |
+
Dataset(name="germeval", language=GERMAN, task=INFORMATION_EXTRACTION),
|
| 80 |
+
Dataset(name="conll-nl", language=DUTCH, task=INFORMATION_EXTRACTION),
|
| 81 |
+
Dataset(name="conll-en", language=ENGLISH, task=INFORMATION_EXTRACTION),
|
| 82 |
+
Dataset(name="scala-sv", language=SWEDISH, task=GRAMMAR),
|
| 83 |
+
Dataset(name="scala-da", language=DANISH, task=GRAMMAR),
|
| 84 |
+
Dataset(name="scala-nb", language=NORWEGIAN, task=GRAMMAR),
|
| 85 |
+
Dataset(name="scala-nn", language=NORWEGIAN, task=GRAMMAR),
|
| 86 |
+
Dataset(name="scala-is", language=ICELANDIC, task=GRAMMAR),
|
| 87 |
+
Dataset(name="scala-fo", language=FAROESE, task=GRAMMAR),
|
| 88 |
+
Dataset(name="scala-de", language=GERMAN, task=GRAMMAR),
|
| 89 |
+
Dataset(name="scala-nl", language=DUTCH, task=GRAMMAR),
|
| 90 |
+
Dataset(name="scala-en", language=ENGLISH, task=GRAMMAR),
|
| 91 |
+
Dataset(name="scandiqa-da", language=DANISH, task=QUESTION_ANSWERING),
|
| 92 |
+
Dataset(name="norquad", language=NORWEGIAN, task=QUESTION_ANSWERING),
|
| 93 |
+
Dataset(name="scandiqa-sv", language=SWEDISH, task=QUESTION_ANSWERING),
|
| 94 |
+
Dataset(name="nqii", language=ICELANDIC, task=QUESTION_ANSWERING),
|
| 95 |
+
Dataset(name="germanquad", language=GERMAN, task=QUESTION_ANSWERING),
|
| 96 |
+
Dataset(name="squad", language=ENGLISH, task=QUESTION_ANSWERING),
|
| 97 |
+
Dataset(name="squad-nl", language=DUTCH, task=QUESTION_ANSWERING),
|
| 98 |
+
Dataset(name="nordjylland-news", language=DANISH, task=SUMMARISATION),
|
| 99 |
+
Dataset(name="mlsum", language=GERMAN, task=SUMMARISATION),
|
| 100 |
+
Dataset(name="rrn", language=ICELANDIC, task=SUMMARISATION),
|
| 101 |
+
Dataset(name="no-sammendrag", language=NORWEGIAN, task=SUMMARISATION),
|
| 102 |
+
Dataset(name="wiki-lingua-nl", language=DUTCH, task=SUMMARISATION),
|
| 103 |
+
Dataset(name="swedn", language=SWEDISH, task=SUMMARISATION),
|
| 104 |
+
Dataset(name="cnn-dailymail", language=ENGLISH, task=SUMMARISATION),
|
| 105 |
+
Dataset(name="mmlu-da", language=DANISH, task=KNOWLEDGE),
|
| 106 |
+
Dataset(name="mmlu-no", language=NORWEGIAN, task=KNOWLEDGE),
|
| 107 |
+
Dataset(name="mmlu-sv", language=SWEDISH, task=KNOWLEDGE),
|
| 108 |
+
Dataset(name="mmlu-is", language=ICELANDIC, task=KNOWLEDGE),
|
| 109 |
+
Dataset(name="mmlu-de", language=GERMAN, task=KNOWLEDGE),
|
| 110 |
+
Dataset(name="mmlu-nl", language=DUTCH, task=KNOWLEDGE),
|
| 111 |
+
Dataset(name="mmlu", language=ENGLISH, task=KNOWLEDGE),
|
| 112 |
+
Dataset(name="arc-da", language=DANISH, task=KNOWLEDGE),
|
| 113 |
+
Dataset(name="arc-no", language=NORWEGIAN, task=KNOWLEDGE),
|
| 114 |
+
Dataset(name="arc-sv", language=SWEDISH, task=KNOWLEDGE),
|
| 115 |
+
Dataset(name="arc-is", language=ICELANDIC, task=KNOWLEDGE),
|
| 116 |
+
Dataset(name="arc-de", language=GERMAN, task=KNOWLEDGE),
|
| 117 |
+
Dataset(name="arc-nl", language=DUTCH, task=KNOWLEDGE),
|
| 118 |
+
Dataset(name="arc", language=ENGLISH, task=KNOWLEDGE),
|
| 119 |
+
Dataset(name="hellaswag-da", language=DANISH, task=REASONING),
|
| 120 |
+
Dataset(name="hellaswag-no", language=NORWEGIAN, task=REASONING),
|
| 121 |
+
Dataset(name="hellaswag-sv", language=SWEDISH, task=REASONING),
|
| 122 |
+
Dataset(name="hellaswag-is", language=ICELANDIC, task=REASONING),
|
| 123 |
+
Dataset(name="hellaswag-de", language=GERMAN, task=REASONING),
|
| 124 |
+
Dataset(name="hellaswag-nl", language=DUTCH, task=REASONING),
|
| 125 |
+
Dataset(name="hellaswag", language=ENGLISH, task=REASONING),
|
| 126 |
+
]
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def main() -> None:
|
| 130 |
+
"""Produce a radial plot."""
|
| 131 |
+
|
| 132 |
+
# Download all the newest records
|
| 133 |
+
response = requests.get("https://scandeval.com/scandeval_benchmark_results.jsonl")
|
| 134 |
+
response.raise_for_status()
|
| 135 |
+
records = [
|
| 136 |
+
json.loads(dct_str)
|
| 137 |
+
for dct_str in response.text.split("\n")
|
| 138 |
+
if dct_str.strip("\n")
|
| 139 |
+
]
|
| 140 |
+
|
| 141 |
+
# Build a dictionary of languages -> results-dataframes, whose indices are the
|
| 142 |
+
# models and columns are the tasks.
|
| 143 |
+
results_dfs = dict()
|
| 144 |
+
for language in {dataset.language for dataset in DATASETS}:
|
| 145 |
+
possible_dataset_names = {
|
| 146 |
+
dataset.name for dataset in DATASETS if dataset.language == language
|
| 147 |
+
}
|
| 148 |
+
data_dict = defaultdict(dict)
|
| 149 |
+
for record in records:
|
| 150 |
+
model_name = record["model"]
|
| 151 |
+
dataset_name = record["dataset"]
|
| 152 |
+
if dataset_name in possible_dataset_names:
|
| 153 |
+
dataset = next(
|
| 154 |
+
dataset for dataset in DATASETS if dataset.name == dataset_name
|
| 155 |
+
)
|
| 156 |
+
results_dict = record['results']['total']
|
| 157 |
+
score = results_dict.get(
|
| 158 |
+
f"test_{dataset.task.metric}", results_dict.get(dataset.task.metric)
|
| 159 |
+
)
|
| 160 |
+
if dataset.task in data_dict[model_name]:
|
| 161 |
+
data_dict[model_name][dataset.task].append(score)
|
| 162 |
+
else:
|
| 163 |
+
data_dict[model_name][dataset.task] = [score]
|
| 164 |
+
results_df = pd.DataFrame(data_dict).T.map(
|
| 165 |
+
lambda list_or_nan:
|
| 166 |
+
np.mean(list_or_nan) if list_or_nan == list_or_nan else list_or_nan
|
| 167 |
+
).dropna()
|
| 168 |
+
if any(task not in results_df.columns for task in ALL_TASKS):
|
| 169 |
+
results_dfs[language] = pd.DataFrame()
|
| 170 |
+
else:
|
| 171 |
+
results_dfs[language] = results_df
|
| 172 |
+
|
| 173 |
+
all_languages: list[str | int | float | tuple[str, str | int | float]] | None = [
|
| 174 |
+
language.name for language in ALL_LANGUAGES.values()
|
| 175 |
+
]
|
| 176 |
+
all_models: list[str | int | float | tuple[str, str | int | float]] | None = list({
|
| 177 |
+
model_id
|
| 178 |
+
for df in results_dfs.values()
|
| 179 |
+
for model_id in df.index
|
| 180 |
+
})
|
| 181 |
+
|
| 182 |
+
with gr.Blocks() as demo:
|
| 183 |
+
gr.Markdown("# Radial Plot Generator")
|
| 184 |
+
gr.Markdown("### Select the models and languages to include in the plot")
|
| 185 |
+
with gr.Row():
|
| 186 |
+
with gr.Column():
|
| 187 |
+
language_names_dropdown = gr.Dropdown(
|
| 188 |
+
choices=all_languages,
|
| 189 |
+
multiselect=True,
|
| 190 |
+
label="Languages",
|
| 191 |
+
value=["Danish"],
|
| 192 |
+
interactive=True,
|
| 193 |
+
)
|
| 194 |
+
model_ids_dropdown = gr.Dropdown(
|
| 195 |
+
choices=all_models,
|
| 196 |
+
multiselect=True,
|
| 197 |
+
label="Models",
|
| 198 |
+
value=["gpt-3.5-turbo-0613", "mistralai/Mistral-7B-v0.1"],
|
| 199 |
+
interactive=True,
|
| 200 |
+
)
|
| 201 |
+
use_win_ratio_checkbox = gr.Checkbox(
|
| 202 |
+
label="Compare models with win ratios (as opposed to raw scores)",
|
| 203 |
+
value=True,
|
| 204 |
+
interactive=True,
|
| 205 |
+
)
|
| 206 |
+
with gr.Column():
|
| 207 |
+
plot = gr.Plot(
|
| 208 |
+
value=produce_radial_plot(
|
| 209 |
+
model_ids_dropdown.value,
|
| 210 |
+
language_names=language_names_dropdown.value,
|
| 211 |
+
use_win_ratio=use_win_ratio_checkbox.value,
|
| 212 |
+
results_dfs=results_dfs,
|
| 213 |
+
),
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
language_names_dropdown.change(
|
| 217 |
+
fn=partial(update_model_ids_dropdown, results_dfs=results_dfs),
|
| 218 |
+
inputs=language_names_dropdown,
|
| 219 |
+
outputs=model_ids_dropdown,
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# Update plot when anything changes
|
| 223 |
+
language_names_dropdown.change(
|
| 224 |
+
fn=partial(produce_radial_plot, results_dfs=results_dfs),
|
| 225 |
+
inputs=[
|
| 226 |
+
model_ids_dropdown, language_names_dropdown, use_win_ratio_checkbox
|
| 227 |
+
],
|
| 228 |
+
outputs=plot,
|
| 229 |
+
)
|
| 230 |
+
model_ids_dropdown.change(
|
| 231 |
+
fn=partial(produce_radial_plot, results_dfs=results_dfs),
|
| 232 |
+
inputs=[
|
| 233 |
+
model_ids_dropdown, language_names_dropdown, use_win_ratio_checkbox
|
| 234 |
+
],
|
| 235 |
+
outputs=plot,
|
| 236 |
+
)
|
| 237 |
+
use_win_ratio_checkbox.change(
|
| 238 |
+
fn=partial(produce_radial_plot, results_dfs=results_dfs),
|
| 239 |
+
inputs=[
|
| 240 |
+
model_ids_dropdown, language_names_dropdown, use_win_ratio_checkbox
|
| 241 |
+
],
|
| 242 |
+
outputs=plot,
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
demo.launch()
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
def update_model_ids_dropdown(
|
| 250 |
+
language_names: list[str], results_dfs: dict[Language, pd.DataFrame] | None
|
| 251 |
+
) -> dict:
|
| 252 |
+
"""When the language names are updated, update the model ids dropdown.
|
| 253 |
+
|
| 254 |
+
Args:
|
| 255 |
+
language_names:
|
| 256 |
+
The names of the languages to include in the plot.
|
| 257 |
+
results_dfs:
|
| 258 |
+
The results dataframes for each language.
|
| 259 |
+
|
| 260 |
+
Returns:
|
| 261 |
+
The Gradio update to the model ids dropdown.
|
| 262 |
+
"""
|
| 263 |
+
if results_dfs is None or len(language_names) == 0:
|
| 264 |
+
return gr.update(choices=[], value=[])
|
| 265 |
+
|
| 266 |
+
filtered_models = list({
|
| 267 |
+
model_id
|
| 268 |
+
for language, df in results_dfs.items()
|
| 269 |
+
for model_id in df.index
|
| 270 |
+
if language.name in language_names
|
| 271 |
+
})
|
| 272 |
+
|
| 273 |
+
if len(filtered_models) == 0:
|
| 274 |
+
return gr.update(choices=[], value=[])
|
| 275 |
+
|
| 276 |
+
return gr.update(choices=filtered_models, value=filtered_models[0])
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
def produce_radial_plot(
|
| 280 |
+
model_ids: list[str],
|
| 281 |
+
language_names: list[str],
|
| 282 |
+
use_win_ratio: bool,
|
| 283 |
+
results_dfs: dict[Language, pd.DataFrame] | None
|
| 284 |
+
) -> go.Figure:
|
| 285 |
+
"""Produce a radial plot as a plotly figure.
|
| 286 |
+
|
| 287 |
+
Args:
|
| 288 |
+
model_ids:
|
| 289 |
+
The ids of the models to include in the plot.
|
| 290 |
+
language_names:
|
| 291 |
+
The names of the languages to include in the plot.
|
| 292 |
+
use_win_ratio:
|
| 293 |
+
Whether to use win ratios (as opposed to raw scores).
|
| 294 |
+
results_dfs:
|
| 295 |
+
The results dataframes for each language.
|
| 296 |
+
|
| 297 |
+
Returns:
|
| 298 |
+
A plotly figure.
|
| 299 |
+
"""
|
| 300 |
+
if results_dfs is None or len(language_names) == 0 or len(model_ids) == 0:
|
| 301 |
+
return go.Figure()
|
| 302 |
+
|
| 303 |
+
tasks = ALL_TASKS
|
| 304 |
+
languages = [ALL_LANGUAGES[language_name] for language_name in language_names]
|
| 305 |
+
|
| 306 |
+
results_dfs_filtered = {
|
| 307 |
+
language: df
|
| 308 |
+
for language, df in results_dfs.items()
|
| 309 |
+
if language.name in language_names
|
| 310 |
+
}
|
| 311 |
+
|
| 312 |
+
# Add all the evaluation results for each model
|
| 313 |
+
results: list[list[float]] = list()
|
| 314 |
+
for model_id in model_ids:
|
| 315 |
+
result_list = list()
|
| 316 |
+
for task in tasks:
|
| 317 |
+
win_ratios = list()
|
| 318 |
+
scores = list()
|
| 319 |
+
for language in languages:
|
| 320 |
+
score = results_dfs_filtered[language].loc[model_id][task]
|
| 321 |
+
win_ratio = np.mean([
|
| 322 |
+
score >= other_score
|
| 323 |
+
for other_score in results_dfs_filtered[language][task].dropna()
|
| 324 |
+
])
|
| 325 |
+
win_ratios.append(win_ratio)
|
| 326 |
+
scores.append(score)
|
| 327 |
+
if use_win_ratio:
|
| 328 |
+
result_list.append(np.mean(win_ratios))
|
| 329 |
+
else:
|
| 330 |
+
result_list.append(np.mean(scores))
|
| 331 |
+
results.append(result_list)
|
| 332 |
+
|
| 333 |
+
# Sort the results to avoid misleading radial plots
|
| 334 |
+
model_idx_with_highest_variance = np.argmax(
|
| 335 |
+
[np.std(result_list) for result_list in results]
|
| 336 |
+
)
|
| 337 |
+
sorted_idxs = np.argsort(results[model_idx_with_highest_variance])
|
| 338 |
+
results = [np.asarray(result_list)[sorted_idxs] for result_list in results]
|
| 339 |
+
tasks = np.asarray(tasks)[sorted_idxs]
|
| 340 |
+
|
| 341 |
+
# Add the results to a plotly figure
|
| 342 |
+
fig = go.Figure()
|
| 343 |
+
for model_id, result_list in zip(model_ids, results):
|
| 344 |
+
fig.add_trace(go.Scatterpolar(
|
| 345 |
+
r=result_list,
|
| 346 |
+
theta=[task.name for task in tasks],
|
| 347 |
+
fill='toself',
|
| 348 |
+
name=model_id,
|
| 349 |
+
))
|
| 350 |
+
|
| 351 |
+
languages_str = ""
|
| 352 |
+
if len(languages) > 1:
|
| 353 |
+
languages_str = ", ".join([language.name for language in languages[:-1]])
|
| 354 |
+
languages_str += " and "
|
| 355 |
+
languages_str += languages[-1].name
|
| 356 |
+
|
| 357 |
+
if use_win_ratio:
|
| 358 |
+
title = f'Win Ratio on on {languages_str} Language Tasks'
|
| 359 |
+
else:
|
| 360 |
+
title = f'LLM Score on on {languages_str} Language Tasks'
|
| 361 |
+
|
| 362 |
+
# Builds the radial plot from the results
|
| 363 |
+
fig.update_layout(
|
| 364 |
+
polar=dict(radialaxis=dict(visible=True)), showlegend=True, title=title
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
return fig
|
| 368 |
+
|
| 369 |
+
if __name__ == "__main__":
|
| 370 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
aiofiles==23.2.1
|
| 2 |
+
altair==5.2.0
|
| 3 |
+
annotated-types==0.6.0
|
| 4 |
+
anyio==4.2.0
|
| 5 |
+
attrs==23.2.0
|
| 6 |
+
certifi==2023.11.17
|
| 7 |
+
charset-normalizer==3.3.2
|
| 8 |
+
click==8.1.7
|
| 9 |
+
colorama==0.4.6
|
| 10 |
+
contourpy==1.2.0
|
| 11 |
+
cycler==0.12.1
|
| 12 |
+
exceptiongroup==1.2.0
|
| 13 |
+
fastapi==0.109.0
|
| 14 |
+
ffmpy==0.3.1
|
| 15 |
+
filelock==3.13.1
|
| 16 |
+
fonttools==4.47.2
|
| 17 |
+
fsspec==2023.12.2
|
| 18 |
+
gradio==4.15.0
|
| 19 |
+
gradio_client==0.8.1
|
| 20 |
+
h11==0.14.0
|
| 21 |
+
httpcore==1.0.2
|
| 22 |
+
httpx==0.26.0
|
| 23 |
+
huggingface-hub==0.20.3
|
| 24 |
+
idna==3.6
|
| 25 |
+
importlib-resources==6.1.1
|
| 26 |
+
Jinja2==3.1.3
|
| 27 |
+
jsonschema==4.21.1
|
| 28 |
+
jsonschema-specifications==2023.12.1
|
| 29 |
+
kiwisolver==1.4.5
|
| 30 |
+
markdown-it-py==3.0.0
|
| 31 |
+
MarkupSafe==2.1.4
|
| 32 |
+
matplotlib==3.8.2
|
| 33 |
+
mdurl==0.1.2
|
| 34 |
+
numpy==1.26.3
|
| 35 |
+
orjson==3.9.12
|
| 36 |
+
packaging==23.2
|
| 37 |
+
pandas==2.2.0
|
| 38 |
+
pillow==10.2.0
|
| 39 |
+
plotly==5.18.0
|
| 40 |
+
pyarrow==15.0.0
|
| 41 |
+
pydantic==2.5.3
|
| 42 |
+
pydantic_core==2.14.6
|
| 43 |
+
pydub==0.25.1
|
| 44 |
+
Pygments==2.17.2
|
| 45 |
+
pyparsing==3.1.1
|
| 46 |
+
python-dateutil==2.8.2
|
| 47 |
+
python-multipart==0.0.6
|
| 48 |
+
pytz==2023.3.post1
|
| 49 |
+
PyYAML==6.0.1
|
| 50 |
+
referencing==0.32.1
|
| 51 |
+
requests==2.31.0
|
| 52 |
+
rich==13.7.0
|
| 53 |
+
rpds-py==0.17.1
|
| 54 |
+
ruff==0.1.14
|
| 55 |
+
semantic-version==2.10.0
|
| 56 |
+
shellingham==1.5.4
|
| 57 |
+
six==1.16.0
|
| 58 |
+
sniffio==1.3.0
|
| 59 |
+
starlette==0.35.1
|
| 60 |
+
tenacity==8.2.3
|
| 61 |
+
tomlkit==0.12.0
|
| 62 |
+
toolz==0.12.1
|
| 63 |
+
tqdm==4.66.1
|
| 64 |
+
typer==0.9.0
|
| 65 |
+
typing_extensions==4.9.0
|
| 66 |
+
tzdata==2023.4
|
| 67 |
+
urllib3==2.1.0
|
| 68 |
+
uvicorn==0.27.0
|
| 69 |
+
websockets==11.0.3
|