Commit
·
3baf99a
1
Parent(s):
8b5abf6
feat: Update with new results every 30 mins
Browse files
app.py
CHANGED
|
@@ -10,6 +10,15 @@ from pydantic import BaseModel
|
|
| 10 |
import gradio as gr
|
| 11 |
import requests
|
| 12 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
class Task(BaseModel):
|
|
@@ -130,46 +139,9 @@ DATASETS = [
|
|
| 130 |
def main() -> None:
|
| 131 |
"""Produce a radial plot."""
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
records = [
|
| 137 |
-
json.loads(dct_str)
|
| 138 |
-
for dct_str in response.text.split("\n")
|
| 139 |
-
if dct_str.strip("\n")
|
| 140 |
-
]
|
| 141 |
-
|
| 142 |
-
# Build a dictionary of languages -> results-dataframes, whose indices are the
|
| 143 |
-
# models and columns are the tasks.
|
| 144 |
-
results_dfs = dict()
|
| 145 |
-
for language in {dataset.language for dataset in DATASETS}:
|
| 146 |
-
possible_dataset_names = {
|
| 147 |
-
dataset.name for dataset in DATASETS if dataset.language == language
|
| 148 |
-
}
|
| 149 |
-
data_dict = defaultdict(dict)
|
| 150 |
-
for record in records:
|
| 151 |
-
model_name = record["model"]
|
| 152 |
-
dataset_name = record["dataset"]
|
| 153 |
-
if dataset_name in possible_dataset_names:
|
| 154 |
-
dataset = next(
|
| 155 |
-
dataset for dataset in DATASETS if dataset.name == dataset_name
|
| 156 |
-
)
|
| 157 |
-
results_dict = record['results']['total']
|
| 158 |
-
score = results_dict.get(
|
| 159 |
-
f"test_{dataset.task.metric}", results_dict.get(dataset.task.metric)
|
| 160 |
-
)
|
| 161 |
-
if dataset.task in data_dict[model_name]:
|
| 162 |
-
data_dict[model_name][dataset.task].append(score)
|
| 163 |
-
else:
|
| 164 |
-
data_dict[model_name][dataset.task] = [score]
|
| 165 |
-
results_df = pd.DataFrame(data_dict).T.map(
|
| 166 |
-
lambda list_or_nan:
|
| 167 |
-
np.mean(list_or_nan) if list_or_nan == list_or_nan else list_or_nan
|
| 168 |
-
).dropna()
|
| 169 |
-
if any(task not in results_df.columns for task in ALL_TASKS):
|
| 170 |
-
results_dfs[language] = pd.DataFrame()
|
| 171 |
-
else:
|
| 172 |
-
results_dfs[language] = results_df
|
| 173 |
|
| 174 |
all_languages: list[str | int | float | tuple[str, str | int | float]] | None = [
|
| 175 |
language.name for language in ALL_LANGUAGES.values()
|
|
@@ -251,7 +223,6 @@ def main() -> None:
|
|
| 251 |
outputs=plot,
|
| 252 |
)
|
| 253 |
|
| 254 |
-
|
| 255 |
demo.launch()
|
| 256 |
|
| 257 |
|
|
@@ -272,6 +243,8 @@ def update_model_ids_dropdown(
|
|
| 272 |
if results_dfs is None or len(language_names) == 0:
|
| 273 |
return gr.update(choices=[], value=[])
|
| 274 |
|
|
|
|
|
|
|
| 275 |
filtered_results_dfs = {
|
| 276 |
language: df
|
| 277 |
for language, df in results_dfs.items()
|
|
@@ -300,7 +273,7 @@ def produce_radial_plot(
|
|
| 300 |
model_ids: list[str],
|
| 301 |
language_names: list[str],
|
| 302 |
use_win_ratio: bool,
|
| 303 |
-
results_dfs: dict[Language, pd.DataFrame] | None
|
| 304 |
) -> go.Figure:
|
| 305 |
"""Produce a radial plot as a plotly figure.
|
| 306 |
|
|
@@ -320,6 +293,17 @@ def produce_radial_plot(
|
|
| 320 |
if results_dfs is None or len(language_names) == 0 or len(model_ids) == 0:
|
| 321 |
return go.Figure()
|
| 322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
tasks = ALL_TASKS
|
| 324 |
languages = [ALL_LANGUAGES[language_name] for language_name in language_names]
|
| 325 |
|
|
@@ -386,7 +370,62 @@ def produce_radial_plot(
|
|
| 386 |
polar=dict(radialaxis=dict(visible=True)), showlegend=True, title=title
|
| 387 |
)
|
| 388 |
|
|
|
|
|
|
|
| 389 |
return fig
|
| 390 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
if __name__ == "__main__":
|
| 392 |
main()
|
|
|
|
| 10 |
import gradio as gr
|
| 11 |
import requests
|
| 12 |
import random
|
| 13 |
+
import logging
|
| 14 |
+
import datetime as dt
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
logging.basicConfig(level=logging.INFO)
|
| 18 |
+
logger = logging.getLogger("radial_plot_generator")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
UPDATE_FREQUENCY_MINUTES = 30
|
| 22 |
|
| 23 |
|
| 24 |
class Task(BaseModel):
|
|
|
|
| 139 |
def main() -> None:
|
| 140 |
"""Produce a radial plot."""
|
| 141 |
|
| 142 |
+
global last_fetch
|
| 143 |
+
results_dfs = fetch_results()
|
| 144 |
+
last_fetch = dt.datetime.now()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
all_languages: list[str | int | float | tuple[str, str | int | float]] | None = [
|
| 147 |
language.name for language in ALL_LANGUAGES.values()
|
|
|
|
| 223 |
outputs=plot,
|
| 224 |
)
|
| 225 |
|
|
|
|
| 226 |
demo.launch()
|
| 227 |
|
| 228 |
|
|
|
|
| 243 |
if results_dfs is None or len(language_names) == 0:
|
| 244 |
return gr.update(choices=[], value=[])
|
| 245 |
|
| 246 |
+
# Download the newest records if it has been more than 5 minutes since the last
|
| 247 |
+
|
| 248 |
filtered_results_dfs = {
|
| 249 |
language: df
|
| 250 |
for language, df in results_dfs.items()
|
|
|
|
| 273 |
model_ids: list[str],
|
| 274 |
language_names: list[str],
|
| 275 |
use_win_ratio: bool,
|
| 276 |
+
results_dfs: dict[Language, pd.DataFrame] | None,
|
| 277 |
) -> go.Figure:
|
| 278 |
"""Produce a radial plot as a plotly figure.
|
| 279 |
|
|
|
|
| 293 |
if results_dfs is None or len(language_names) == 0 or len(model_ids) == 0:
|
| 294 |
return go.Figure()
|
| 295 |
|
| 296 |
+
global last_fetch
|
| 297 |
+
minutes_since_last_fetch = (dt.datetime.now() - last_fetch).total_seconds() / 60
|
| 298 |
+
if minutes_since_last_fetch > UPDATE_FREQUENCY_MINUTES:
|
| 299 |
+
results_dfs = fetch_results()
|
| 300 |
+
last_fetch = dt.datetime.now()
|
| 301 |
+
|
| 302 |
+
logger.info(
|
| 303 |
+
f"Producing radial plot for models {model_ids!r} on languages "
|
| 304 |
+
f"{language_names!r}..."
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
tasks = ALL_TASKS
|
| 308 |
languages = [ALL_LANGUAGES[language_name] for language_name in language_names]
|
| 309 |
|
|
|
|
| 370 |
polar=dict(radialaxis=dict(visible=True)), showlegend=True, title=title
|
| 371 |
)
|
| 372 |
|
| 373 |
+
logger.info("Successfully produced radial plot.")
|
| 374 |
+
|
| 375 |
return fig
|
| 376 |
|
| 377 |
+
def fetch_results() -> dict[Language, pd.DataFrame]:
|
| 378 |
+
"""Fetch the results from the ScandEval benchmark.
|
| 379 |
+
|
| 380 |
+
Returns:
|
| 381 |
+
A dictionary of languages -> results-dataframes, whose indices are the
|
| 382 |
+
models and columns are the tasks.
|
| 383 |
+
"""
|
| 384 |
+
logger.info("Fetching results from ScandEval benchmark...")
|
| 385 |
+
|
| 386 |
+
response = requests.get("https://scandeval.com/scandeval_benchmark_results.jsonl")
|
| 387 |
+
response.raise_for_status()
|
| 388 |
+
records = [
|
| 389 |
+
json.loads(dct_str)
|
| 390 |
+
for dct_str in response.text.split("\n")
|
| 391 |
+
if dct_str.strip("\n")
|
| 392 |
+
]
|
| 393 |
+
|
| 394 |
+
# Build a dictionary of languages -> results-dataframes, whose indices are the
|
| 395 |
+
# models and columns are the tasks.
|
| 396 |
+
results_dfs = dict()
|
| 397 |
+
for language in {dataset.language for dataset in DATASETS}:
|
| 398 |
+
possible_dataset_names = {
|
| 399 |
+
dataset.name for dataset in DATASETS if dataset.language == language
|
| 400 |
+
}
|
| 401 |
+
data_dict = defaultdict(dict)
|
| 402 |
+
for record in records:
|
| 403 |
+
model_name = record["model"]
|
| 404 |
+
dataset_name = record["dataset"]
|
| 405 |
+
if dataset_name in possible_dataset_names:
|
| 406 |
+
dataset = next(
|
| 407 |
+
dataset for dataset in DATASETS if dataset.name == dataset_name
|
| 408 |
+
)
|
| 409 |
+
results_dict = record['results']['total']
|
| 410 |
+
score = results_dict.get(
|
| 411 |
+
f"test_{dataset.task.metric}", results_dict.get(dataset.task.metric)
|
| 412 |
+
)
|
| 413 |
+
if dataset.task in data_dict[model_name]:
|
| 414 |
+
data_dict[model_name][dataset.task].append(score)
|
| 415 |
+
else:
|
| 416 |
+
data_dict[model_name][dataset.task] = [score]
|
| 417 |
+
results_df = pd.DataFrame(data_dict).T.map(
|
| 418 |
+
lambda list_or_nan:
|
| 419 |
+
np.mean(list_or_nan) if list_or_nan == list_or_nan else list_or_nan
|
| 420 |
+
).dropna()
|
| 421 |
+
if any(task not in results_df.columns for task in ALL_TASKS):
|
| 422 |
+
results_dfs[language] = pd.DataFrame()
|
| 423 |
+
else:
|
| 424 |
+
results_dfs[language] = results_df
|
| 425 |
+
|
| 426 |
+
logger.info("Successfully fetched results from ScandEval benchmark.")
|
| 427 |
+
|
| 428 |
+
return results_dfs
|
| 429 |
+
|
| 430 |
if __name__ == "__main__":
|
| 431 |
main()
|