anonymous12321 commited on
Commit
bcffc85
·
verified ·
1 Parent(s): 32b562b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -14
README.md CHANGED
@@ -1,20 +1,51 @@
1
  ---
2
- title: Council Topics Classifier-PT
3
- emoji: 🚀
4
- colorFrom: red
5
- colorTo: red
6
- sdk: docker
7
- app_port: 8501
8
- tags:
9
- - streamlit
10
  pinned: false
11
- short_description: Municipal Meeting Minutes Discussion Subjects Classification
12
- license: cc-by-nc-nd-4.0
13
  ---
14
 
15
- # Welcome to Streamlit!
16
 
17
- Edit `/src/streamlit_app.py` to customize this app to your heart's desire. :heart:
18
 
19
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
20
- forums](https://discuss.streamlit.io).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Council Topics Classifier
3
+ emoji: 🏛️
4
+ colorFrom: blue
5
+ colorTo: green
6
+ sdk: streamlit
7
+ sdk_version: 1.36.0
8
+ app_file: src/streamlit_app.py
 
9
  pinned: false
10
+ license: cc-by-4.0
 
11
  ---
12
 
13
+ # 🏛️ Council Topics Classifier
14
 
15
+ **Council Topics Classifier** is a system for automatically identifying topics in **Portuguese municipal meeting minutes discussion subjects**.
16
 
17
+ ---
18
+
19
+ ## 🎯 About
20
+
21
+ This demo showcases the classifier's ability to:
22
+ - Detect topics in Portuguese municipal texts discussion subjects
23
+ - Use a hybrid feature set (TF-IDF + BERTimbau embeddings)
24
+ - Combine Logistic Regression and Gradient Boosting models in an adaptive weighted ensemble
25
+ - Apply dynamic thresholds optimized per topic
26
+ - Handle unbalanced topic distributions with active learning
27
+
28
+ ---
29
+
30
+ ## 📊 Model Performance
31
+
32
+ - **Model Architecture**: Logistic Regression + 3x Gradient Boosting models
33
+ - **Features**: TF-IDF (1–3 n-grams) + BERTimbau contextual embeddings
34
+ - **Adaptive weighting**: Rare topics get higher LogReg weight, common topics get higher GB weight
35
+ - **Dynamic thresholds**: Optimized per topic using validation data
36
+
37
+ ---
38
+
39
+ ## 📝 Usage
40
+
41
+ 1. **Try Your Own Text**: Paste Portuguese municipal text in the input area
42
+ 2. **Demo Examples**: Select from pre-loaded examples to see topic predictions
43
+ 3. **View Results**: Confidence scores for each predicted topic are displayed interactively
44
+
45
+ ---
46
+
47
+ ## 🔧 Running Locally
48
+
49
+ ```bash
50
+ pip install -r requirements.txt
51
+ streamlit run app.py