Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dotenv import load_dotenv
|
| 2 |
+
import time
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from ChatCohere import chat_completion, summarize
|
| 6 |
+
from PokemonCards import choose_random_cards
|
| 7 |
+
from QdrantRag import NeuralSearcher, SemanticCache, qdrant_client, encoder, image_encoder, processor, sparse_encoder
|
| 8 |
+
load_dotenv()
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
searcher = NeuralSearcher("pokemon_texts", "pokemon_images", qdrant_client, encoder, image_encoder, processor, sparse_encoder)
|
| 12 |
+
semantic_cache = SemanticCache(qdrant_client, encoder, "semantic_cache", 0.75)
|
| 13 |
+
|
| 14 |
+
def chat_pokemon(message: str):
|
| 15 |
+
answer = semantic_cache.search_cache(message)
|
| 16 |
+
if answer != "":
|
| 17 |
+
r = ""
|
| 18 |
+
for c in answer:
|
| 19 |
+
r += c
|
| 20 |
+
time.sleep(0.001)
|
| 21 |
+
yield r
|
| 22 |
+
else:
|
| 23 |
+
context_search = searcher.search_text(message)
|
| 24 |
+
reranked_context = searcher.reranking(message, context_search)
|
| 25 |
+
context = "\n\n-----------------\n\n".join(reranked_context)
|
| 26 |
+
final_prompt = f"USER QUERY:\n\n{message.content}\n\nCONTEXT:\n\n{context}"
|
| 27 |
+
response = chat_completion(final_prompt)
|
| 28 |
+
semantic_cache.upload_to_cache(message, response)
|
| 29 |
+
r = ""
|
| 30 |
+
for c in response:
|
| 31 |
+
r += c
|
| 32 |
+
time.sleep(0.001)
|
| 33 |
+
yield r
|
| 34 |
+
|
| 35 |
+
def what_pokemon(image_input):
|
| 36 |
+
save_path = Image.fromarray(image_input)
|
| 37 |
+
result = searcher.search_image(save_path)
|
| 38 |
+
return "You Pokemon might be: " + result[0]
|
| 39 |
+
|
| 40 |
+
def card_package(n_cards:int=5):
|
| 41 |
+
description, cards = choose_random_cards(n_cards)
|
| 42 |
+
package = [f"" for i in range(len(cards))]
|
| 43 |
+
cards_message = "\n\n".join(package)
|
| 44 |
+
natural_lang_description = chat_completion([{"role": "system", "content": "You are an expert in Pokemon cards. You know everything about their characteristics, abilities, and evolutions. You always reply with the most accurate information, you are polite and helpful."}, {"role": "user", "content": f"Can you enthusiastically describe the cards in this package?\n\n{description}"}])
|
| 45 |
+
return "## Your package:\n\n" + cards_message + "\n\n## Description:\n\n" + summarize(natural_lang_description)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
iface1 = gr.ChatInterface(fn=chat_pokemon, title="Pokemon Chatbot", description="Ask any question about Pokemon and get an answer!")
|
| 49 |
+
iface2 = gr.Interface(fn=what_pokemon, title="Pokemon Image Classifier", description="Upload an image of a Pokemon and get its name!", inputs="image", outputs="text")
|
| 50 |
+
iface3 = gr.Interface(fn=card_package, title="Pokemon Card Package", description="Get a package of random Pokemon cards!", inputs=gr.Slider(5,10,step=1), outputs=gr.Markdown(value="Your output will be displayed here", label="Card Package"))
|
| 51 |
+
|
| 52 |
+
iface = gr.TabbedInterface([iface1, iface2, iface3], ["PokemonChat", "Identify Pokemon", "Card Package"])
|
| 53 |
+
|
| 54 |
+
iface.launch()
|