Spaces:
Running
on
Zero
Running
on
Zero
| #==================================================================== | |
| # https://huggingface.co/spaces/asigalov61/Orpheus-Music-Transformer | |
| #==================================================================== | |
| """ | |
| Orpheus Music Transformer Gradio App - Single Model, Simplified Version | |
| SOTA 8k multi-instrumental music transformer trained on 2.31M+ high-quality MIDIs | |
| Using one model which was trained for 4 full epochs" | |
| """ | |
| import os | |
| os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
| import time as reqtime | |
| import datetime | |
| from pytz import timezone | |
| import torch | |
| import matplotlib.pyplot as plt | |
| import gradio as gr | |
| import spaces | |
| from huggingface_hub import hf_hub_download | |
| import TMIDIX | |
| from midi_to_colab_audio import midi_to_colab_audio | |
| from x_transformer_2_3_1 import TransformerWrapper, AutoregressiveWrapper, Decoder, top_p | |
| import random | |
| # ----------------------------- | |
| # CONFIGURATION & GLOBALS | |
| # ----------------------------- | |
| SEP = '=' * 70 | |
| PDT = timezone('US/Pacific') | |
| MODEL_CHECKPOINT = 'Orpheus_Music_Transformer_Trained_Model_128497_steps_0.6934_loss_0.7927_acc.pth' | |
| SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' | |
| NUM_OUT_BATCHES = 10 | |
| PREVIEW_LENGTH = 120 # in tokens | |
| # ----------------------------- | |
| # PRINT START-UP INFO | |
| # ----------------------------- | |
| def print_sep(): | |
| print(SEP) | |
| print_sep() | |
| print("Orpheus Music Transformer Gradio App") | |
| print_sep() | |
| print("Loading modules...") | |
| # ----------------------------- | |
| # ENVIRONMENT & PyTorch Settings | |
| # ----------------------------- | |
| os.environ['USE_FLASH_ATTENTION'] = '1' | |
| torch.set_float32_matmul_precision('high') | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| torch.backends.cudnn.allow_tf32 = True | |
| torch.backends.cuda.enable_mem_efficient_sdp(True) | |
| torch.backends.cuda.enable_math_sdp(True) | |
| torch.backends.cuda.enable_flash_sdp(True) | |
| torch.backends.cuda.enable_cudnn_sdp(True) | |
| print_sep() | |
| print("PyTorch version:", torch.__version__) | |
| print("Done loading modules!") | |
| print_sep() | |
| # ----------------------------- | |
| # MODEL INITIALIZATION | |
| # ----------------------------- | |
| print_sep() | |
| print("Instantiating model...") | |
| device_type = 'cuda' | |
| dtype = 'bfloat16' | |
| ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] | |
| ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) | |
| SEQ_LEN = 8192 | |
| PAD_IDX = 18819 | |
| model = TransformerWrapper( | |
| num_tokens=PAD_IDX + 1, | |
| max_seq_len=SEQ_LEN, | |
| attn_layers=Decoder( | |
| dim=2048, | |
| depth=8, | |
| heads=32, | |
| rotary_pos_emb=True, | |
| attn_flash=True | |
| ) | |
| ) | |
| model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) | |
| print_sep() | |
| print("Loading model checkpoint...") | |
| checkpoint = hf_hub_download( | |
| repo_id='asigalov61/Orpheus-Music-Transformer', | |
| filename=MODEL_CHECKPOINT | |
| ) | |
| model.load_state_dict(torch.load(checkpoint, map_location='cuda', weights_only=True)) | |
| model = torch.compile(model, mode='max-autotune') | |
| print_sep() | |
| print("Done!") | |
| print("Model will use", dtype, "precision...") | |
| print_sep() | |
| model.cuda() | |
| model.eval() | |
| # ----------------------------- | |
| # HELPER FUNCTIONS | |
| # ----------------------------- | |
| def render_midi_output(final_composition): | |
| """Generate MIDI score, plot, and audio from final composition.""" | |
| fname, midi_score = save_midi(final_composition) | |
| time_val = midi_score[-1][1] / 1000 # seconds marker from last note | |
| midi_plot = TMIDIX.plot_ms_SONG( | |
| midi_score, | |
| plot_title='Orpheus Music Transformer Composition', | |
| block_lines_times_list=[], | |
| return_plt=True | |
| ) | |
| midi_audio = midi_to_colab_audio( | |
| fname + '.mid', | |
| soundfont_path=SOUDFONT_PATH, | |
| sample_rate=16000, | |
| output_for_gradio=True | |
| ) | |
| return (16000, midi_audio), midi_plot, fname + '.mid', time_val | |
| # ----------------------------- | |
| # MIDI PROCESSING FUNCTIONS | |
| # ----------------------------- | |
| def load_midi(input_midi, | |
| apply_sustains=True, | |
| remove_duplicate_pitches=True, | |
| remove_overlapping_durations=True | |
| ): | |
| """Process the input MIDI file and create a token sequence.""" | |
| raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name) | |
| escore_notes = TMIDIX.advanced_score_processor(raw_score, | |
| return_enhanced_score_notes=True, | |
| apply_sustain=apply_sustains | |
| ) | |
| if escore_notes: | |
| escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], | |
| sort_drums_last=True | |
| ) | |
| if remove_duplicate_pitches: | |
| escore_notes = TMIDIX.remove_duplicate_pitches_from_escore_notes(escore_notes) | |
| if remove_overlapping_durations: | |
| escore_notes = TMIDIX.fix_escore_notes_durations(escore_notes, | |
| min_notes_gap=0 | |
| ) | |
| dscore = TMIDIX.delta_score_notes(escore_notes) | |
| dcscore = TMIDIX.chordify_score([d[1:] for d in dscore]) | |
| melody_chords = [18816] | |
| #======================================================= | |
| # MAIN PROCESSING CYCLE | |
| #======================================================= | |
| for i, c in enumerate(dcscore): | |
| delta_time = c[0][0] | |
| melody_chords.append(delta_time) | |
| for e in c: | |
| #======================================================= | |
| # Durations | |
| dur = max(1, min(255, e[1])) | |
| # Patches | |
| pat = max(0, min(128, e[5])) | |
| # Pitches | |
| ptc = max(1, min(127, e[3])) | |
| # Velocities | |
| # Calculating octo-velocity | |
| vel = max(8, min(127, e[4])) | |
| velocity = round(vel / 15)-1 | |
| #======================================================= | |
| # FINAL NOTE SEQ | |
| #======================================================= | |
| # Writing final note | |
| pat_ptc = (128 * pat) + ptc | |
| dur_vel = (8 * dur) + velocity | |
| melody_chords.extend([pat_ptc+256, dur_vel+16768]) | |
| return melody_chords | |
| else: | |
| return [18816] | |
| def save_midi(tokens): | |
| """Convert token sequence back to a MIDI score and write it using TMIDIX. | |
| """ | |
| time = 0 | |
| dur = 1 | |
| vel = 90 | |
| pitch = 60 | |
| channel = 0 | |
| patch = 0 | |
| patches = [-1] * 16 | |
| channels = [0] * 16 | |
| channels[9] = 1 | |
| song_f = [] | |
| for ss in tokens: | |
| if 0 <= ss < 256: | |
| time += ss * 16 | |
| if 256 <= ss < 16768: | |
| patch = (ss-256) // 128 | |
| if patch < 128: | |
| if patch not in patches: | |
| if 0 in channels: | |
| cha = channels.index(0) | |
| channels[cha] = 1 | |
| else: | |
| cha = 15 | |
| patches[cha] = patch | |
| channel = patches.index(patch) | |
| else: | |
| channel = patches.index(patch) | |
| if patch == 128: | |
| channel = 9 | |
| pitch = (ss-256) % 128 | |
| if 16768 <= ss < 18816: | |
| dur = ((ss-16768) // 8) * 16 | |
| vel = (((ss-16768) % 8)+1) * 15 | |
| song_f.append(['note', time, dur, channel, pitch, vel, patch]) | |
| patches = [0 if x==-1 else x for x in patches] | |
| output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f) | |
| # Generate a time stamp using the PDT timezone. | |
| timestamp = datetime.datetime.now(PDT).strftime("%Y%m%d_%H%M%S") | |
| fname = f"Orpheus-Music-Transformer-Composition" | |
| TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter( | |
| output_score, | |
| output_signature='Orpheus Music Transformer', | |
| output_file_name=fname, | |
| track_name='Project Los Angeles', | |
| list_of_MIDI_patches=patches, | |
| verbose=False | |
| ) | |
| return fname, output_score | |
| # ----------------------------- | |
| # MUSIC GENERATION FUNCTION (Combined) | |
| # ----------------------------- | |
| def generate_music(prime, num_gen_tokens, num_gen_batches, model_temperature, model_top_p): | |
| """Generate music tokens given prime tokens and parameters.""" | |
| if len(prime) >= 6656: | |
| prime = [18816] + prime[-6656:] | |
| inputs = prime | |
| print("Generating...") | |
| inp = torch.LongTensor([inputs] * num_gen_batches).cuda() | |
| if model_top_p < 1: | |
| with ctx: | |
| out = model.generate( | |
| inp, | |
| num_gen_tokens, | |
| filter_logits_fn=top_p, | |
| filter_kwargs={'thres': model_top_p}, | |
| temperature=model_temperature, | |
| eos_token=18818, | |
| return_prime=False, | |
| verbose=False | |
| ) | |
| else: | |
| with ctx: | |
| out = model.generate( | |
| inp, | |
| num_gen_tokens, | |
| temperature=model_temperature, | |
| eos_token=18818, | |
| return_prime=False, | |
| verbose=False | |
| ) | |
| print("Done!") | |
| print_sep() | |
| return out.tolist() | |
| def generate_music_and_state(input_midi, | |
| apply_sustains, | |
| remove_duplicate_pitches, | |
| remove_overlapping_durations, | |
| prime_instruments, | |
| num_prime_tokens, | |
| num_gen_tokens, | |
| model_temperature, | |
| model_top_p, | |
| add_drums, | |
| add_outro, | |
| final_composition, | |
| generated_batches, | |
| block_lines | |
| ): | |
| """ | |
| Generate tokens using the model, update the composition state, and prepare outputs. | |
| This function combines seed loading, token generation, and UI output packaging. | |
| """ | |
| print_sep() | |
| print("Request start time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S")) | |
| start_time = reqtime.time() | |
| print_sep() | |
| if input_midi is not None: | |
| fn = os.path.basename(input_midi.name) | |
| fn1 = fn.split('.')[0] | |
| print('Input file name:', fn) | |
| print('Apply sustains:', apply_sustains) | |
| print('Remove duplicate pitches:', remove_duplicate_pitches) | |
| print('Remove overlapping duriations', remove_overlapping_durations) | |
| print('Prime instruments:', prime_instruments) | |
| print('Num prime tokens:', num_prime_tokens) | |
| print('Num gen tokens:', num_gen_tokens) | |
| print('Model temp:', model_temperature) | |
| print('Model top p:', model_top_p) | |
| print('Add drums:', add_drums) | |
| print('Add outro:', add_outro) | |
| print_sep() | |
| # Load seed from MIDI if there is no existing composition. | |
| if not final_composition and input_midi is not None: | |
| final_composition = load_midi(input_midi, | |
| apply_sustains=apply_sustains, | |
| remove_duplicate_pitches=remove_duplicate_pitches, | |
| remove_overlapping_durations=remove_overlapping_durations | |
| ) | |
| if num_prime_tokens < 6656: | |
| final_composition = final_composition[:num_prime_tokens] | |
| midi_fname, midi_score = save_midi(final_composition) | |
| # Use the last note's time as a marker. | |
| block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0) | |
| if not final_composition and input_midi is None: | |
| final_composition = [18816, 0] | |
| for i, instr in enumerate(prime_instruments): | |
| instr_num = patch2number[instr] | |
| final_composition.append((128*instr_num)+(72-(i*12))+256) | |
| final_composition.append((8*16)+5+16768) | |
| if final_composition: | |
| if add_outro: | |
| final_composition.append(18817) # Outro token | |
| if add_drums: | |
| drum_pitches = random.sample([35, 36, 41, 43, 45], k=1) | |
| for dp in drum_pitches: | |
| final_composition.extend([(128*128)+dp+256]) # Drum patch/pitch token | |
| print_sep() | |
| print('Composition has', len(final_composition), 'tokens') | |
| print_sep() | |
| batched_gen_tokens = generate_music(final_composition, num_gen_tokens, | |
| NUM_OUT_BATCHES, model_temperature, model_top_p) | |
| output_batches = [] | |
| for i, tokens in enumerate(batched_gen_tokens): | |
| preview_tokens = final_composition[-PREVIEW_LENGTH:] | |
| midi_fname, midi_score = save_midi(preview_tokens + tokens) | |
| plot_kwargs = {'plot_title': f'Batch # {i}', 'return_plt': True} | |
| if len(final_composition) > PREVIEW_LENGTH: | |
| plot_kwargs['preview_length_in_notes'] = len([t for t in preview_tokens if 256 <= t < 16768]) | |
| midi_plot = TMIDIX.plot_ms_SONG(midi_score, **plot_kwargs) | |
| midi_audio = midi_to_colab_audio(midi_fname + '.mid', | |
| soundfont_path=SOUDFONT_PATH, | |
| sample_rate=16000, | |
| output_for_gradio=True) | |
| output_batches.append([(16000, midi_audio), midi_plot, tokens]) | |
| # Update generated_batches (for use by add/remove functions) | |
| generated_batches = batched_gen_tokens | |
| # Flatten outputs: states then audio and plots for each batch. | |
| outputs_flat = [] | |
| for batch in output_batches: | |
| outputs_flat.extend([batch[0], batch[1]]) | |
| print("Request end time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S")) | |
| print_sep() | |
| end_time = reqtime.time() | |
| execution_time = end_time - start_time | |
| print(f"Request execution time: {execution_time} seconds") | |
| print_sep() | |
| return [final_composition, generated_batches, block_lines] + outputs_flat | |
| # ----------------------------- | |
| # BATCH HANDLING FUNCTIONS | |
| # ----------------------------- | |
| def add_batch(batch_number, final_composition, generated_batches, block_lines): | |
| """Add tokens from the specified batch to the final composition and update outputs.""" | |
| if generated_batches: | |
| final_composition.extend(generated_batches[batch_number]) | |
| midi_fname, midi_score = save_midi(final_composition) | |
| block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0) | |
| midi_plot = TMIDIX.plot_ms_SONG( | |
| midi_score, | |
| plot_title='Orpheus Music Transformer Composition', | |
| block_lines_times_list=block_lines[:-1], | |
| return_plt=True | |
| ) | |
| midi_audio = midi_to_colab_audio(midi_fname + '.mid', | |
| soundfont_path=SOUDFONT_PATH, | |
| sample_rate=16000, | |
| output_for_gradio=True) | |
| print("Added batch #", batch_number) | |
| print_sep() | |
| return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines | |
| else: | |
| return None, None, None, [], [], [] | |
| def remove_batch(batch_number, num_tokens, final_composition, generated_batches, block_lines): | |
| """Remove tokens from the final composition and update outputs.""" | |
| if final_composition and len(final_composition) > num_tokens: | |
| final_composition = final_composition[:-num_tokens] | |
| if block_lines: | |
| block_lines.pop() | |
| midi_fname, midi_score = save_midi(final_composition) | |
| midi_plot = TMIDIX.plot_ms_SONG( | |
| midi_score, | |
| plot_title='Orpheus Music Transformer Composition', | |
| block_lines_times_list=block_lines[:-1], | |
| return_plt=True | |
| ) | |
| midi_audio = midi_to_colab_audio(midi_fname + '.mid', | |
| soundfont_path=SOUDFONT_PATH, | |
| sample_rate=16000, | |
| output_for_gradio=True) | |
| print("Removed batch #", batch_number) | |
| print_sep() | |
| return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines | |
| else: | |
| return None, None, None, [], [], [] | |
| def clear(): | |
| """Clear outputs and reset state.""" | |
| print_sep() | |
| print('Clear batch...') | |
| print_sep() | |
| return None, None, None, [], [] | |
| def reset(final_composition=[], generated_batches=[], block_lines=[]): | |
| """Reset composition state.""" | |
| print_sep() | |
| print('Reset composition...') | |
| print_sep() | |
| return [], [], [] | |
| patch2number = {v: k for k, v in TMIDIX.Number2patch.items()} | |
| patch2number['Drums'] = 128 | |
| # ----------------------------- | |
| # GRADIO INTERFACE SETUP | |
| # ----------------------------- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Orpheus Music Transformer</h1>") | |
| gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>SOTA 8k multi-instrumental music transformer trained on 2.31M+ high-quality MIDIs</h1>") | |
| gr.HTML(""" | |
| Check out <a href="https://huggingface.co/datasets/projectlosangeles/Godzilla-MIDI-Dataset">Godzilla MIDI Dataset</a> on Hugging Face | |
| <p> | |
| <a href="https://huggingface.co/spaces/asigalov61/Orpheus-Music-Transformer?duplicate=true"> | |
| <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face"> | |
| </a> | |
| </p> | |
| for faster execution and endless generation! | |
| """) | |
| gr.HTML(""" | |
| <iframe width="100%" height="300" scrolling="no" frameborder="no" allow="autoplay" src="https://w.soundcloud.com/player/?url=https%3A//api.soundcloud.com/playlists/2042253855&color=%23ff5500&auto_play=false&hide_related=false&show_comments=true&show_user=true&show_reposts=false&show_teaser=true&visual=true"></iframe><div style="font-size: 10px; color: #cccccc;line-break: anywhere;word-break: normal;overflow: hidden;white-space: nowrap;text-overflow: ellipsis; font-family: Interstate,Lucida Grande,Lucida Sans Unicode,Lucida Sans,Garuda,Verdana,Tahoma,sans-serif;font-weight: 100;"><a href="https://soundcloud.com/aleksandr-sigalov-61" title="Project Los Angeles" target="_blank" style="color: #cccccc; text-decoration: none;">Project Los Angeles</a> · <a href="https://soundcloud.com/aleksandr-sigalov-61/sets/orpheus-music-transformer" title="Orpheus Music Transformer" target="_blank" style="color: #cccccc; text-decoration: none;">Orpheus Music Transformer</a></div> | |
| """) | |
| gr.Markdown("## Key Features") | |
| gr.Markdown(""" | |
| - **Efficient Architecture with RoPE**: Compact and very fast 479M full attention autoregressive transformer with RoPE. | |
| - **Extended Sequence Length**: 8k tokens that comfortably fit most music compositions and facilitate long-term music structure generation. | |
| - **Premium Training Data**: Trained solely on the highest-quality MIDIs from the Godzilla MIDI dataset. | |
| - **Optimized MIDI Encoding**: Extremely efficient MIDI representation using only 3 tokens per note and 7 tokens per tri-chord. | |
| - **Distinct Encoding Order**: Features a unique duration/velocity last MIDI encoding order for refined musical expression. | |
| - **Full-Range Instrumental Learning**: True full-range MIDI instruments encoding enabling the model to learn each instrument separately. | |
| - **Natural Composition Endings**: Outro tokens that help generate smooth and natural musical conclusions. | |
| """) | |
| gr.Markdown( | |
| """ | |
| ## If you enjoyed Orpheus Music Transformer, please star and duplicate. It helps a lot! 🤗 | |
| ### [⭐ Star this Space](https://huggingface.co/spaces/asigalov61/Orpheus-Music-Transformer) | |
| ### [🔁 Duplicate this Space](https://huggingface.co/spaces/asigalov61/Orpheus-Music-Transformer?duplicate=true) | |
| ### [⭐ Star models repo](https://huggingface.co/asigalov61/Orpheus-Music-Transformer) | |
| """ | |
| ) | |
| # Global state variables for composition | |
| final_composition = gr.State([]) | |
| generated_batches = gr.State([]) | |
| block_lines = gr.State([]) | |
| gr.Markdown("## Upload seed MIDI or click 'Generate' for random output") | |
| gr.Markdown("### PLEASE NOTE:") | |
| gr.Markdown("* Orpheus Music Transformer is a primarily music continuation/co-composition model!") | |
| gr.Markdown("* The model works best if given some music context to work with") | |
| gr.Markdown("* Random generation from SOS token/embeddings may not always produce good results") | |
| input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) | |
| input_midi.upload(reset, [final_composition, generated_batches, block_lines], | |
| [final_composition, generated_batches, block_lines]) | |
| apply_sustains = gr.Checkbox(value=True, label="Apply sustains (if present)") | |
| remove_duplicate_pitches = gr.Checkbox(value=True, label="Remove duplicate pitches (if present)") | |
| remove_overlapping_durations = gr.Checkbox(value=True, label="Trim overlapping durations (if present)") | |
| gr.Markdown("## Generation options") | |
| prime_instruments = gr.Dropdown(label="Prime instruments (select up to 5)", choices=list(patch2number.keys()), | |
| multiselect=True, max_choices=5, type="value", | |
| info="Instruments are asigned from top to bottom in order of selection. Custom MIDI overrides prime instruments." | |
| ) | |
| prime_instruments.input(reset, [final_composition, generated_batches, block_lines], | |
| [final_composition, generated_batches, block_lines]) | |
| num_prime_tokens = gr.Slider(16, 6656, value=6656, step=1, label="Number of prime tokens") | |
| num_gen_tokens = gr.Slider(16, 1024, value=512, step=1, label="Number of tokens to generate") | |
| model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature") | |
| model_top_p = gr.Slider(0.1, 1.0, value=0.96, step=0.01, label="Model sampling top p value") | |
| add_drums = gr.Checkbox(value=False, label="Add drums") | |
| add_outro = gr.Checkbox(value=False, label="Add an outro") | |
| generate_btn = gr.Button("Generate", variant="primary") | |
| gr.Markdown("## Batch Previews") | |
| outputs = [final_composition, generated_batches, block_lines] | |
| # Two outputs (audio and plot) for each batch | |
| for i in range(NUM_OUT_BATCHES): | |
| with gr.Tab(f"Batch # {i}"): | |
| audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3") | |
| plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot") | |
| outputs.extend([audio_output, plot_output]) | |
| generate_btn.click( | |
| generate_music_and_state, | |
| [input_midi, | |
| apply_sustains, | |
| remove_duplicate_pitches, | |
| remove_overlapping_durations, | |
| prime_instruments, | |
| num_prime_tokens, | |
| num_gen_tokens, | |
| model_temperature, | |
| model_top_p, | |
| add_drums, | |
| add_outro, | |
| final_composition, | |
| generated_batches, | |
| block_lines | |
| ], | |
| outputs | |
| ) | |
| gr.Markdown("## Add/Remove Batch") | |
| batch_number = gr.Slider(0, NUM_OUT_BATCHES - 1, value=0, step=1, label="Batch number to add/remove") | |
| add_btn = gr.Button("Add batch", variant="primary") | |
| remove_btn = gr.Button("Remove batch", variant="stop") | |
| clear_btn = gr.ClearButton() | |
| final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3") | |
| final_plot_output = gr.Plot(label="Final MIDI plot") | |
| final_file_output = gr.File(label="Final MIDI file") | |
| add_btn.click( | |
| add_batch, | |
| [batch_number, final_composition, generated_batches, block_lines], | |
| [final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines] | |
| ) | |
| remove_btn.click( | |
| remove_batch, | |
| [batch_number, num_gen_tokens, final_composition, generated_batches, block_lines], | |
| [final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines] | |
| ) | |
| clear_btn.click(clear, inputs=None, | |
| outputs=[final_audio_output, final_plot_output, final_file_output, final_composition, block_lines]) | |
| demo.launch() |