Spaces:
Running
Running
File size: 11,494 Bytes
1ec4b6d 8dc009f 517683d 08db8da 1ec4b6d 08db8da 1ec4b6d 99242d4 110f966 99242d4 8dc009f 1ec4b6d f4be66d 1ec4b6d 08db8da 1ec4b6d 6837c8b 1ec4b6d 08db8da 1ec4b6d 08db8da 1ec4b6d 38c4910 1ec4b6d 38c4910 1ec4b6d 0d73e2a 1ec4b6d 0d73e2a 1ec4b6d 0d73e2a 1ec4b6d 38c4910 1ec4b6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import os
from pathlib import Path
import gradio as gr
import spaces
import torch
import smplx
import numpy as np
from website import CREDITS, WEB_source, WEB_target, WEBSITE
from download_deps import get_smpl_models, download_models, download_model_config
from download_deps import download_tmr, download_motionfix, download_motionfix_dataset
from download_deps import download_embeddings
import random
# DO NOT initialize CUDA here
DEFAULT_TEXT = "do it slower"
import os
os.environ['PYOPENGL_PLATFORM'] = 'egl'
os.environ['LD_LIBRARY_PATH'] = '/usr/lib/x86_64-linux-gnu:/usr/lib/x86_64-linux-gnu/nvidia/current:' + os.environ.get('LD_LIBRARY_PATH', '')
# Optional debugging
import subprocess
try:
result = subprocess.run(['ldconfig', '-p'], capture_output=True, text=True)
egl_libs = [line for line in result.stdout.split('\n') if 'EGL' in line]
print("Available EGL libraries:", egl_libs)
except Exception as e:
print(f"Error finding libraries: {e}")
class MotionEditor:
def __init__(self):
# Don't initialize any CUDA components in __init__
self.is_initialized = False
self.MFIX_p = download_motionfix() + '/motionfix'
self.SOURCE_MOTS_p = download_embeddings() + '/embeddings'
self.MFIX_DATASET_DICT = download_motionfix_dataset()
self.model_ckpt_path = download_models()
self.model_config_feats = download_model_config()
@spaces.GPU
def initialize_if_needed(self):
"""Initialize models only when needed, within a GPU-decorated function"""
if self.is_initialized:
return
from normalization import Normalizer
from diffusion import create_diffusion
from text_encoder import ClipTextEncoder
from tmed_denoiser import TMED_denoiser
# Initialize components
self.device = torch.device('cuda')
self.normalizer = Normalizer()
self.text_encoder = ClipTextEncoder()
# Load models and configs
model_ckpt = self.model_ckpt_path
self.infeats = self.model_config_feats
checkpoint = torch.load(model_ckpt, map_location=self.device)
checkpoint = {k.replace('denoiser.', ''): v for k, v in checkpoint.items()}
# Setup denoiser
self.tmed_denoiser = TMED_denoiser().to(self.device)
self.tmed_denoiser.load_state_dict(checkpoint, strict=False)
self.tmed_denoiser.eval()
# Setup diffusion
self.diffusion = create_diffusion(
timestep_respacing=None,
learn_sigma=False,
sigma_small=True,
diffusion_steps=300,
noise_schedule='squaredcos_cap_v2',
predict_xstart=True
)
# Setup SMPL model
smpl_models_path = str(Path(get_smpl_models()))
self.body_model = smplx.SMPLHLayer(
f"{smpl_models_path}/smplh",
model_type='smplh',
gender='neutral',
ext='npz'
)
self.is_initialized = True
@spaces.GPU
def process_motion(self, input_text, key_to_use):
"""Main processing function, GPU-decorated"""
self.initialize_if_needed()
# Load dataset sample
ds_sample = self.MFIX_DATASET_DICT[key_to_use]
# Process features
data_dict = self.process_features(ds_sample)
source_motion_norm, target_motion_norm = self.normalize_motions(data_dict)
source_motion = self.denormalize_motion(source_motion_norm)
# Generate edited motion
edited_motion = self.generate_edited_motion(
input_text,
source_motion_norm,
target_motion_norm
)
# Render result
return self.render_result(edited_motion, source_motion)
def process_features(self, ds_sample):
"""Process features - called from within GPU-decorated function"""
from feature_extractor import FEAT_GET_METHODS
data_dict = {}
for feat in self.infeats:
data_dict[f'{feat}_source'] = FEAT_GET_METHODS[feat](
ds_sample['motion_source']
)[None].to(self.device)
data_dict[f'{feat}_target'] = FEAT_GET_METHODS[feat](
ds_sample['motion_target']
)[None].to(self.device)
return data_dict
def normalize_motions(self, data_dict):
"""Normalize motions - called from within GPU-decorated function"""
batch = self.normalizer.norm_and_cat(data_dict, self.infeats)
return batch['source'], batch['target']
def generate_edited_motion(self, input_text, source_motion, target_motion):
"""Generate edited motion - called from within GPU-decorated function"""
# Encode text
texts_cond = [''] * 2 + [input_text]
text_emb, text_mask = self.text_encoder(texts_cond)
# Setup masks
bsz = 1
seqlen_src = source_motion.shape[0]
seqlen_tgt = target_motion.shape[0]
cond_motion_mask = torch.ones((bsz, seqlen_src), dtype=bool, device=self.device)
mask_target = torch.ones((bsz, seqlen_tgt), dtype=bool, device=self.device)
# Generate diffusion output
diff_out = self.tmed_denoiser._diffusion_reverse(
text_emb.to(self.device),
text_mask.to(self.device),
source_motion,
cond_motion_mask,
mask_target,
self.diffusion,
init_vec=None,
init_from='noise',
gd_text=2.0,
gd_motion=2.0,
steps_num=300
)
return self.denormalize_motion(diff_out)
def denormalize_motion(self, diff_out):
"""Denormalize motion - called from within GPU-decorated function"""
from geometry_utils import diffout2motion
return diffout2motion(diff_out.permute(1, 0, 2), self.normalizer).squeeze()
def render_result(self, edited_motion, source_motion):
"""Render result - called from within GPU-decorated function"""
from body_renderer import get_render
from transform3d import transform_body_pose, rotate_body_degrees
# import ipdb; ipdb.set_trace()
# Transform motions
edited_motion_transformed = self.transform_motion(edited_motion)
source_motion_transformed = self.transform_motion(source_motion)
# Render video
if os.path.exists('./output_movie.mp4'):
os.remove('./output_movie.mp4')
return get_render(
self.body_model,
[edited_motion_transformed['trans'], source_motion_transformed['trans']],
[edited_motion_transformed['rots_init'], source_motion_transformed['rots_init']],
[edited_motion_transformed['rots_rest'], source_motion_transformed['rots_rest']],
output_path='./output_movie.mp4',
text='',
colors=['sky blue', 'red']
)
def transform_motion(self, motion):
"""Transform motion - called from within GPU-decorated function"""
from transform3d import transform_body_pose, rotate_body_degrees
motion_aa = transform_body_pose(motion[:, 3:], '6d->aa')
trans = motion[..., :3].detach().cpu()
rots_aa = motion_aa.detach().cpu()
rots_rotated, trans_rotated = rotate_body_degrees(
transform_body_pose(rots_aa, 'aa->rot'),
trans,
offset=np.pi
)
rots_rotated_aa = transform_body_pose(rots_rotated, 'rot->aa')
return {
'trans': trans_rotated,
'rots_init': rots_rotated_aa[:, 0],
'rots_rest': rots_rotated_aa[:, 1:]
}
# Gradio Interface
def create_gradio_interface():
editor = MotionEditor()
@spaces.GPU
def process_and_show_video(input_text, random_key_state):
return editor.process_motion(input_text, random_key_state)
def random_source_motion(set_to_pick):
from dataset_utils import load_motionfix
mfix_train, mfix_test = load_motionfix(editor.MFIX_p)
current_set = {
'all': mfix_test | mfix_train,
'train': mfix_train,
'test': mfix_test
}[set_to_pick]
random_key = random.choice(list(current_set.keys()))
motion = current_set[random_key]['motion_a']
text_annot = current_set[random_key]['annotation']
return motion, text_annot, random_key, text_annot
def clear():
return ""
# Gradio UI
with gr.Blocks(css=CUSTOM_CSS) as demo:
gr.Markdown(WEBSITE)
random_key_state = gr.State()
with gr.Row():
with gr.Column(scale=5):
gr.Markdown(WEB_source)
random_button = gr.Button("Random")
with gr.Row():
clear_button_retrieval = gr.Button("Clear", scale=0)
suggested_edit_text = gr.Textbox(
placeholder="Texts likely to edit the motion:",
label="Suggested Edit Text",
value=''
)
set_to_pick = gr.Radio(
['all', 'train', 'test'],
value='all',
label="Set to pick from"
)
retrieved_video_output = gr.Video(
label="Retrieved Motion",
height=360,
width=480
)
with gr.Column(scale=5):
gr.Markdown(WEB_target)
with gr.Row():
clear_button_edit = gr.Button("Clear", scale=0)
edit_button = gr.Button("Edit", scale=0)
input_text = gr.Textbox(
placeholder="Type the edit text you want:",
label="Input Text",
value=DEFAULT_TEXT
)
video_output = gr.Video(
label="Generated Video",
height=360,
width=480
)
# Event handlers
edit_button.click(
process_and_show_video,
inputs=[input_text, random_key_state],
outputs=video_output
)
random_button.click(
random_source_motion,
inputs=set_to_pick,
outputs=[
retrieved_video_output,
suggested_edit_text,
random_key_state,
input_text
]
)
clear_button_edit.click(clear, outputs=input_text)
clear_button_retrieval.click(clear, outputs=suggested_edit_text)
gr.Markdown(CREDITS)
return demo
# Constants
CUSTOM_CSS = """
.gradio-row { display: flex; gap: 20px; }
.gradio-column { flex: 1; }
.gradio-container { display: flex; flex-direction: column; gap: 10px; }
.gradio-button-row { display: flex; gap: 10px; }
.gradio-textbox-row { display: flex; gap: 10px; align-items: center; }
.gradio-edit-row { gap: 10px; align-items: center; }
.gradio-textbox-with-button { display: flex; align-items: center; }
.gradio-textbox-with-button input { flex-grow: 1; }
"""
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(share=True) |