Spaces:
Running
Running
File size: 15,504 Bytes
50a46fa d8530c7 8dc009f f4be66d 6837c8b 517683d 6837c8b 517683d 8dc009f 6837c8b 517683d 38c4910 6837c8b 51947a3 6837c8b 517683d 6837c8b 517683d d8530c7 6837c8b 8dc009f 517683d 7495dca 38c4910 7495dca 38c4910 7495dca 8dc009f f66aca9 8dc009f f4be66d 517683d 6837c8b 517683d 6837c8b 517683d 6837c8b 517683d 6837c8b 6da63fc 6837c8b 517683d 6837c8b 517683d 6837c8b 51947a3 517683d d8530c7 50a46fa 6837c8b 517683d 6837c8b 38c4910 50a46fa 6da63fc 38c4910 6da63fc 38c4910 6837c8b 38c4910 517683d 38c4910 b51fddd 38c4910 517683d 0d73e2a d8530c7 517683d 0d73e2a 517683d b51fddd 0d73e2a 517683d 0d73e2a 517683d 0d73e2a b51fddd 0d73e2a b51fddd 517683d 7495dca 517683d b51fddd 517683d 6837c8b 0d73e2a b51fddd 0d73e2a b51fddd 0d73e2a 7495dca 6837c8b 517683d 6837c8b 7495dca 6837c8b 38c4910 517683d 6837c8b 517683d f4be66d 517683d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
from calendar import EPOCH
from geometry_utils import diffout2motion
import gradio as gr
import spaces
import torch
import random
import os
from pathlib import Path
import smplx
from body_renderer import get_render
import joblib
# import cv2
# import moderngl
# ctx = moderngl.create_context(standalone=True)
# print(ctx)
access_token_smpl = os.environ.get('HF_SMPL_TOKEN')
os.environ["PYOPENGL_PLATFORM"] = "egl"
zero = torch.Tensor([0]).cuda()
print(zero.device) # <-- 'cuda:0' 🤗
DEFAULT_TEXT = "do it slower "
def get_smpl_models():
REPO_ID = 'athn-nik/smpl_models'
from huggingface_hub import snapshot_download
return snapshot_download(repo_id=REPO_ID, allow_patterns="smplh*",
token=access_token_smpl)
WEBSITE = ("""<div class="embed_hidden" style="text-align: center;">
<h1>MotionFix: Text-Driven 3D Human Motion Editing</h1>
<h3>
<a href="https://is.mpg.de/person/~nathanasiou" target="_blank" rel="noopener noreferrer">Nikos Athanasiou</a><sup>1</sup>,
<a href="https://is.mpg.de/person/acseke" target="_blank" rel="noopener noreferrer">Alpar Cseke</a><sup>1</sup>,
<br>
<a href="https://ps.is.mpg.de/person/mdiomataris" target="_blank" rel="noopener noreferrer">Markos Diomataris</a><sup>1, 3</sup>,
<a href="https://is.mpg.de/person/black" target="_blank" rel="noopener noreferrer">Michael J. Black</a><sup>1</sup>,
<a href="https://imagine.enpc.fr/~varolg/" target="_blank" rel="noopener noreferrer">Gül Varol</a><sup>2</sup>
</h3>
<h3>
<sup>1</sup>Max Planck Institute for Intelligent Systems, Tübingen, Germany;
<sup>2</sup>LIGM, École des Ponts, Univ Gustave Eiffel, CNRS, France,
<sup>3</sup>ETH Zürich, Switzerland
</h3>
</div>
<div style="display:flex; gap: 0.3rem; justify-content: center; align-items: center;" align="center">
<a href='https://arxiv.org/pdf/2408.00712'><img src='https://img.shields.io/badge/Arxiv-2405.20340-A42C25?style=flat&logo=arXiv&logoColor=A42C25'></a>
<a href='https://motionfix.is.tue.mpg.de'><img src='https://img.shields.io/badge/Project-Page-%23df5b46?style=flat&logo=Google%20chrome&logoColor=%23df5b46'></a>
<a href='https://www.youtube.com/watch?v=cFa6V6Ua-TY'><img src='https://img.shields.io/badge/YouTube-red?style=flat&logo=youtube&logoColor=white'></a>
</div>
""")
CREDITS=("""<div class="embed_hidden" style="text-align: center;">
<h3>
The renderer of this demo is adapted from the render of
<a href="https://geometry.stanford.edu/projects/humor/" target="_blank" rel="noopener noreferrer">HuMoR</a>
with the help of <a href="https://ps.is.mpg.de/person/trakshit" target="_blank" rel="noopener noreferrer">Tithi Rakshit</a> :)
</h3>
""")
WEB_source = ("""<div class="embed_hidden" style="text-align: center;">
<h1>Pick a motion to edit!</h1>
<h3>
Here you should pick a source motion
<hr class="double">
</h3>
</div>
""")
WEB_target = ("""<div class="embed_hidden" style="text-align: center;">
<h1>Now type the text to edit that motion!</h1>
<h3>
Here you should get the generated motion!
<hr class="double">
</h3>
</div>
""")
@spaces.GPU
def greet(n):
print(zero.device) # <-- 'cuda:0' 🤗
try:
number = float(n)
except ValueError:
return "Invalid input. Please enter a number."
return f"Hello {zero + number} Tensor"
def clear():
return ""
def show_video(input_text, key_to_use):
from normalization import Normalizer
normalizer = Normalizer()
from diffusion import create_diffusion
from text_encoder import ClipTextEncoder
from tmed_denoiser import TMED_denoiser
model_ckpt = download_models()
checkpoint = torch.load(model_ckpt)
motion_to_edit = download_motion_from_dataset(key_to_use)
ds_sample = joblib.load(motion_to_edit)
source_motion_norm = ds_sample['source_feats_norm'].to('cuda')
seqlen_tgt = ds_sample['target_feats_norm'].shape[0]
seqlen_src = ds_sample['source_feats_norm'].shape[0]
# import ipdb; ipdb.set_trace()
checkpoint = {k.replace('denoiser.', ''): v for k, v in checkpoint.items()}
tmed_denoiser = TMED_denoiser().to('cuda')
tmed_denoiser.load_state_dict(checkpoint, strict=False)
tmed_denoiser.eval()
text_encoder = ClipTextEncoder()
texts_cond = [input_text]
diffusion_process = create_diffusion(timestep_respacing=None,
learn_sigma=False, sigma_small=True,
diffusion_steps=300,
noise_schedule='squaredcos_cap_v2',
predict_xstart=True)
bsz = 1
no_of_texts = len(texts_cond)
texts_cond = ['']*no_of_texts + texts_cond
texts_cond = ['']*no_of_texts + texts_cond
text_emb, text_mask = text_encoder(texts_cond)
cond_emb_motion = source_motion_norm.unsqueeze(0).permute(1, 0, 2)
cond_motion_mask = torch.ones((bsz, seqlen_src),
dtype=bool, device='cuda')
mask_target = torch.ones((bsz, seqlen_tgt),
dtype=bool, device='cuda')
diff_out = tmed_denoiser._diffusion_reverse(text_emb.to(cond_emb_motion.device),
text_mask.to(cond_emb_motion.device),
cond_emb_motion,
cond_motion_mask,
mask_target,
diffusion_process,
init_vec=None,
init_from='noise',
gd_text=2.0,
gd_motion=2.0,
steps_num=300)
edited_motion = diffout2motion(diff_out, normalizer).squeeze()
# import ipdb; ipdb.set_trace()
# aitrenderer = get_renderer()
# SMPL_LAYER = SMPLLayer(model_type='smplh', ext='npz', gender='neutral')
# edited_mot_to_render = pack_to_render(rots=edited_motion[..., 3:],
# trans=edited_motion[..., :3])
SMPL_MODELS_PATH = str(Path(get_smpl_models()))
body_model=smplx.SMPLHLayer(f"{SMPL_MODELS_PATH}/smplh",
model_type='smplh',
gender='neutral',ext='npz')
# run_smpl_fwd_verticesbody_model, body_transl, body_orient, body_pose,
import random
xx = random.randint(1, 1000)
# edited_mot_to_render
from body_renderer import get_render
from transform3d import transform_body_pose
edited_motion_aa = transform_body_pose(edited_motion[:, 3:],
'6d->aa')
if os.path.exists('./output_movie.mp4'):
os.remove('./output_movie.mp4')
fname = get_render(body_model,
[edited_motion[..., :3].detach().cpu()],
[edited_motion_aa[..., :3].detach().cpu()],
[edited_motion_aa[..., 3:].detach().cpu()],
output_path='./output_movie.mp4',
text='', colors=['sky blue'])
# import ipdb; ipdb.set_trace()
# fname = render_motion(AIT_RENDERER, [edited_mot_to_render],
# f"movie_example--{str(xx)}",
# pose_repr='aa',
# color=[color_map['generated']],
# smpl_layer=SMPL_LAYER)
print(fname)
print(os.path.abspath(fname))
return fname
from huggingface_hub import hf_hub_download
def download_models():
REPO_ID = 'athn-nik/example-model'
return hf_hub_download(REPO_ID, filename="tmed_compressed.ckpt")
def download_motion_from_dataset(key_to_dl):
REPO_ID = 'athn-nik/example-model'
from huggingface_hub import snapshot_download
keytodl = key_to_dl
keytodl = '000008'
path_for_ds = snapshot_download(repo_id=REPO_ID,
allow_patterns=f"dataset_inputs/{keytodl}",
token=access_token_smpl)
path_for_ds_sample = path_for_ds + f'/dataset_inputs/{keytodl}.pth.tar'
return path_for_ds_sample
def download_tmr():
REPO_ID = 'athn-nik/example-model'
# return hf_hub_download(REPO_ID, filename="min_checkpoint.ckpt")
from huggingface_hub import snapshot_download
return snapshot_download(repo_id=REPO_ID, allow_patterns="tmr*",
token=access_token_smpl)
def download_motionfix():
REPO_ID = 'athn-nik/example-model'
# return hf_hub_download(REPO_ID, filename="min_checkpoint.ckpt")
from huggingface_hub import snapshot_download
return snapshot_download(repo_id=REPO_ID, allow_patterns="motionfix*",
token=access_token_smpl)
def download_motionfix_dataset():
REPO_ID = 'athn-nik/example-model'
dataset_downloaded_path = hf_hub_download(REPO_ID, filename="tmed_compressed.ckpt")
dataset_dict = joblib.load(dataset_downloaded_path)
return dataset_dict
def download_embeddings():
REPO_ID = 'athn-nik/example-model'
# return hf_hub_download(REPO_ID, filename="min_checkpoint.ckpt")
from huggingface_hub import snapshot_download
return snapshot_download(repo_id=REPO_ID, allow_patterns="embeddings*",
token=access_token_smpl)
MFIX_p = download_motionfix() + '/motionfix'
SOURCE_MOTS_p = download_embeddings() + '/embeddings'
MFIX_DATASET_DICT = download_motionfix_dataset()
import gradio as gr
def clear():
return ""
def random_source_motion(set_to_pick):
# import ipdb;ipdb.set_trace()
mfix_train, mfix_test = load_motionfix(MFIX_p)
if set_to_pick == 'all':
current_set = mfix_test | mfix_train
elif set_to_pick == 'train':
current_set = mfix_train
elif set_to_pick == 'test':
current_set = mfix_test
import random
random_key = random.choice(list(current_set.keys()))
curvid = current_set[random_key]['motion_a']
text_annot = current_set[random_key]['annotation']
return curvid, text_annot, random_key, text_annot
def retrieve_video(retrieve_text):
tmr_text_encoder = get_tmr_model(download_tmr())
# import ipdb;ipdb.set_trace()
# text_encoded = tmr_text_encoder([retrieve_text])
motion_embeds = None
from gen_utils import read_json
import numpy as np
motion_embeds = torch.load(SOURCE_MOTS_p+'/source_motions_embeddings.pt')
motion_keyids =np.array(read_json(SOURCE_MOTS_p+'/keyids_embeddings.json'))
mfix_train, mfix_test = load_motionfix(MFIX_p)
all_mots = mfix_test | mfix_train
scores = tmr_text_encoder.compute_scores(retrieve_text, embs=motion_embeds)
sorted_idxs = np.argsort(-scores)
best_keyids = motion_keyids[sorted_idxs]
# best_scores = scores[sorted_idxs]
top_mot = best_keyids[0]
curvid = all_mots[top_mot]['motion_a']
text_annot = all_mots[top_mot]['annotation']
return curvid, text_annot
with gr.Blocks(css="""
.gradio-row {
display: flex;
gap: 20px;
}
.gradio-column {
flex: 1;
}
.gradio-container {
display: flex;
flex-direction: column;
gap: 10px;
}
.gradio-button-row {
display: flex;
gap: 10px;
}
.gradio-textbox-row {
display: flex;
gap: 10px;
align-items: center;
}
.gradio-edit-row {
gap: 10px;
align-items: center;
}
.gradio-textbox-with-button {
display: flex;
align-items: center;
}
.gradio-textbox-with-button input {
flex-grow: 1;
}
""") as demo:
gr.Markdown(WEBSITE)
random_key_state = gr.State()
with gr.Row(elem_id="gradio-row"):
with gr.Column(scale=5, elem_id="gradio-column"):
gr.Markdown(WEB_source)
with gr.Row(elem_id="gradio-button-row"):
# iterative_button = gr.Button("Iterative")
# retrieve_button = gr.Button("TMRetrieve")
random_button = gr.Button("Random")
with gr.Row(elem_id="gradio-textbox-row"):
with gr.Column(scale=5, elem_id="gradio-textbox-with-button"):
# retrieve_text = gr.Textbox(placeholder="Type the text for the motion you want to Retrieve:",
# show_label=True, label="Retrieval Text",
# value=DEFAULT_TEXT)
clear_button_retrieval = gr.Button("Clear", scale=0)
with gr.Row(elem_id="gradio-textbox-row"):
suggested_edit_text = gr.Textbox(placeholder="Texts likely to edit the motion:",
show_label=True, label="Suggested Edit Text",
value='')
xxx = 'https://motion-editing.s3.eu-central-1.amazonaws.com/collection_wo_walks_runs/rendered_pairs/011327_120_240-002682_120_240.mp4'
set_to_pick = gr.Radio(['all', 'train', 'test'],
value='all',
label="Set to pick from",
info="Motion will be picked from whole dataset or test or train data.")
# import ipdb; ipdb.set_trace()
retrieved_video_output = gr.Video(label="Retrieved Motion",
# value=xxx,
height=360, width=480)
with gr.Column(scale=5, elem_id="gradio-column"):
gr.Markdown(WEB_target)
with gr.Row(elem_id="gradio-edit-row"):
clear_button_edit = gr.Button("Clear", scale=0)
edit_button = gr.Button("Edit", scale=0)
with gr.Row(elem_id="gradio-textbox-row"):
input_text = gr.Textbox(placeholder="Type the edit text you want:",
show_label=False, label="Input Text",
value=DEFAULT_TEXT)
video_output = gr.Video(label="Generated Video", height=360,
width=480)
def process_and_show_video(input_text, random_key_state):
fname = show_video(input_text, random_key_state)
return fname
def process_and_retrieve_video(input_text):
fname = retrieve_video(input_text)
return fname
from retrieval_loader import get_tmr_model
from dataset_utils import load_motionfix
edit_button.click(process_and_show_video, inputs=[input_text, random_key_state], outputs=video_output)
# retrieve_button.click(process_and_retrieve_video, inputs=retrieve_text, outputs=[retrieved_video_output, suggested_edit_text])
random_button.click(random_source_motion, inputs=set_to_pick,
outputs=[retrieved_video_output,
suggested_edit_text,
random_key_state,
input_text])
clear_button_edit.click(clear, outputs=input_text)
# clear_button_retrieval.click(clear, outputs=retrieve_text)
gr.Markdown(CREDITS)
demo.launch(share=True)
|