Spaces:
Running
Running
File size: 8,365 Bytes
afe68b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
from __future__ import annotations
from pathlib import Path
import numpy as np
import pandas as pd
from ase import Atom, Atoms
from ase.calculators.calculator import BaseCalculator
from ase.data import chemical_symbols, covalent_radii, vdw_alvarez
from ase.io import read, write
from prefect import flow, task
from prefect.futures import wait
from scipy import stats
from tqdm.auto import tqdm
from mlip_arena.models import REGISTRY, MLIPEnum
from mlip_arena.tasks.utils import get_calculator
@task
def homonuclear_diatomic(symbol: str, calculator: BaseCalculator, out_dir: Path):
"""
Calculate the potential energy curve for single homonuclear diatomic molecule.
This function computes the potential energy of a diatomic molecule (two atoms of
the same element) across a range of interatomic distances. The distance range is
automatically determined from the covalent and van der Waals radii of the element.
Args:
symbol: Chemical symbol of the atom (e.g., 'H', 'O', 'Fe')
calculator: ASE calculator object used to compute the potential energies. Could be VASP, MLIP, etc.
Returns:
None: Results are saved as trajectory files.
Note:
- Minimum distance is set to 0.9× the covalent radius
- Maximum distance is set to 3.1× the van der Waals radius (or 6 Å if unknown)
- Distance step size is fixed at 0.01 Å
- If an existing trajectory file is found, the calculation will resume from where it left off
- The atoms are placed in a periodic box large enough to avoid self-interaction
"""
atom = Atom(symbol)
rmin = 0.9 * covalent_radii[atom.number]
rvdw = (
vdw_alvarez.vdw_radii[atom.number]
if atom.number < len(vdw_alvarez.vdw_radii)
else np.nan
)
rmax = 3.1 * rvdw if not np.isnan(rvdw) else 6
rstep = 0.01
npts = int((rmax - rmin) / rstep)
rs = np.linspace(rmin, rmax, npts)
es = np.zeros_like(rs)
da = symbol + symbol
out_dir.mkdir(parents=True, exist_ok=True)
skip = 0
a = 5 * rmax
r = rs[0]
positions = [
[a / 2 - r / 2, a / 2, a / 2],
[a / 2 + r / 2, a / 2, a / 2],
]
traj_fpath = out_dir / f"{da!s}.extxyz"
if traj_fpath.exists():
traj = read(traj_fpath, index=":")
skip = len(traj)
atoms = traj[-1]
else:
# Create the unit cell with two atoms
atoms = Atoms(
da,
positions=positions,
# magmoms=magmoms,
cell=[a, a + 0.001, a + 0.002],
pbc=False,
)
atoms.calc = calculator
for i, r in enumerate(tqdm(rs)):
if i < skip:
continue
positions = [
[a / 2 - r / 2, a / 2, a / 2],
[a / 2 + r / 2, a / 2, a / 2],
]
# atoms.set_initial_magnetic_moments(magmoms)
atoms.set_positions(positions)
es[i] = atoms.get_potential_energy()
write(traj_fpath, atoms, append="a")
@task
def analyze(out_dir: Path):
df = pd.DataFrame(
columns=[
"name",
# "method",
"R",
"E",
"F",
"S^2",
"force-flip-times",
"force-total-variation",
"force-jump",
"energy-diff-flip-times",
"energy-grad-norm-max",
"energy-jump",
"energy-total-variation",
"tortuosity",
"conservation-deviation",
"spearman-descending-force",
"spearman-ascending-force",
"spearman-repulsion-energy",
"spearman-attraction-energy",
"pbe-energy-mae",
"pbe-force-mae",
]
)
for symbol in chemical_symbols[1:]:
da = symbol + symbol
traj_fpath = out_dir / f"{da!s}.extxyz"
if not traj_fpath.exists():
continue
traj = read(traj_fpath, index=":")
#
# Extract PEC data
#
Rs, Es, Fs, S2s = [], [], [], []
for atoms in traj:
vec = atoms.positions[1] - atoms.positions[0]
r = np.linalg.norm(vec)
e = atoms.get_potential_energy()
f = np.inner(vec / r, atoms.get_forces()[1])
# s2 = np.mean(np.power(atoms.get_magnetic_moments(), 2))
Rs.append(r)
Es.append(e)
Fs.append(f)
# S2s.append(s2)
rs = np.array(Rs)
es = np.array(Es)
fs = np.array(Fs)
#
# Sort interatomic distances and align to zero at far field
#
indices = np.argsort(rs)[::-1]
rs = rs[indices]
es = es[indices]
eshift = es[0]
es -= eshift
fs = fs[indices]
#
# Metrics
#
iminf = np.argmin(fs)
imine = np.argmin(es)
de_dr = np.gradient(es, rs)
# d2e_dr2 = np.gradient(de_dr, rs)
rounded_fs = np.copy(fs)
rounded_fs[np.abs(rounded_fs) < 1e-2] = 0 # 10 meV/A
fs_sign = np.sign(rounded_fs)
mask = fs_sign != 0
rounded_fs = rounded_fs[mask]
fs_sign = fs_sign[mask]
# force sign changes
f_flip = np.diff(fs_sign) != 0
fdiff = np.diff(fs)
fdiff_sign = np.sign(fdiff)
mask = fdiff_sign != 0
fdiff = fdiff[mask]
fdiff_sign = fdiff_sign[mask]
fdiff_flip = np.diff(fdiff_sign) != 0
# force discontinuities
fjump = (
np.abs(fdiff[:-1][fdiff_flip]).sum() + np.abs(fdiff[1:][fdiff_flip]).sum()
)
ediff = np.diff(es)
ediff[np.abs(ediff) < 1e-3] = 0 # 1 meV
ediff_sign = np.sign(ediff)
mask = ediff_sign != 0
ediff = ediff[mask]
ediff_sign = ediff_sign[mask]
ediff_flip = np.diff(ediff_sign) != 0
# energy discontinuities
ejump = (
np.abs(ediff[:-1][ediff_flip]).sum() + np.abs(ediff[1:][ediff_flip]).sum()
)
# conservation deviation
conservation_deviation = np.mean(np.abs(fs + de_dr))
# total variation (for tortuosity)
etv = np.sum(np.abs(np.diff(es)))
data = {
"name": da,
# "method": model_name,
"R": rs,
"E": es + eshift,
"F": fs,
"S^2": S2s,
"force-flip-times": np.sum(f_flip),
"force-total-variation": np.sum(np.abs(np.diff(fs))),
"force-jump": fjump,
"energy-diff-flip-times": np.sum(ediff_flip),
"energy-grad-norm-max": np.max(np.abs(de_dr)),
"energy-jump": ejump,
# "energy-grad-norm-mean": np.mean(de_dr_abs),
"energy-total-variation": etv,
"tortuosity": etv / (abs(es[0] - es.min()) + (es[-1] - es.min())),
"conservation-deviation": conservation_deviation,
"spearman-descending-force": stats.spearmanr(
rs[iminf:], fs[iminf:]
).statistic,
"spearman-ascending-force": stats.spearmanr(
rs[:iminf], fs[:iminf]
).statistic,
"spearman-repulsion-energy": stats.spearmanr(
rs[imine:], es[imine:]
).statistic,
"spearman-attraction-energy": stats.spearmanr(
rs[:imine], es[:imine]
).statistic,
}
df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)
return df
@flow
def homonuclear_diatomics(model: str | BaseCalculator, run_dir: Path | None = None):
model_name = (
MLIPEnum[model].name if isinstance(model, str) else model.__class__.__name__
)
family = (
REGISTRY[model_name]["family"] if hasattr(MLIPEnum, model_name) else "custom"
)
out_dir = run_dir if run_dir is not None else Path.cwd() / family / model_name
futures = []
for symbol in chemical_symbols[1:]:
calculator = get_calculator(model)
future = homonuclear_diatomic.submit(
symbol,
calculator,
out_dir=out_dir,
)
futures.append(future)
wait(futures)
df = analyze(out_dir)
df["method"] = model_name
df.to_json(out_dir / "homonuclear-diatomics.json", orient="records")
return [f.result(raise_on_failure=False) for f in futures]
|