File size: 1,417 Bytes
3e9154b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
"""

FILE: 06_reranker.py



PURPOSE:

- Improve ranking accuracy by comparing query + result pairs using a CrossEncoder

- Works on top FAISS candidates and reorders them based on semantic relevance



REQUIREMENTS:

pip install sentence-transformers

"""

from sentence_transformers import CrossEncoder

# Best model for semantic relevance matching
# Best model for semantic relevance matching (Upgraded to L-12 for maximum accuracy)
RERANK_MODEL = "cross-encoder/ms-marco-MiniLM-L-12-v2"

class Reranker:

    def __init__(self):
        print(f"🤖 Loading reranking model: {RERANK_MODEL}")
        self.model = CrossEncoder(RERANK_MODEL)

    def rerank(self, query, candidates):
        """

        candidates = list of dict objects:

        [

            {"name": "", "domain": "", "category": "", "region": "", "text": "...", "score": number}

        ]

        """

        # Clean text for better model understanding (replace separators with commas)
        pairs = []
        for c in candidates:
            clean_text = c["text"].replace("•", ", ").replace("  ", " ").strip()
            pairs.append((query, clean_text))

        scores = self.model.predict(pairs)

        # attach and sort
        for i, s in enumerate(scores):
            candidates[i]["rerank_score"] = float(s)

        return sorted(candidates, key=lambda x: x["rerank_score"], reverse=True)