ling-series-spaces / smart_writer_kit /agent_for_paragraph_continuation.py
GitHub Action
Sync ling-space changes from GitHub commit d5d4701
439ab17
import pandas as pd
from model_handler import ModelHandler
from config import LING_1T
from .agent_common_utils import format_df_to_string
def fetch_paragraph_continuation_agent(prompt: str, editor_content: str, style: str, kb_df: pd.DataFrame, short_outline_df: pd.DataFrame, long_outline_df: pd.DataFrame):
"""
Agent for fetching a single paragraph continuation (Ribbon UI version).
"""
print("\n[Agent][fetch_paragraph_continuation_agent] === 推理类型:整段续写 (Single) ===")
try:
# 1. Format context
style_context = f"### 整体章程\n{style}\n\n"
kb_context = format_df_to_string(kb_df, "知识库")
short_outline_context = format_df_to_string(short_outline_df, "当前章节大纲")
long_outline_context = format_df_to_string(long_outline_df, "故事总纲")
# 2. Build System Prompt
system_prompt = (
"你是一个富有创意的长篇小说家。请根据提供的背景设定和当前文本,自然地续写一段高质量的剧情。\n"
"请直接输出续写内容,不要包含任何解释、前缀或后缀。"
)
# 3. Build User Prompt
full_context = style_context + kb_context + long_outline_context + short_outline_context
user_instruction = prompt if prompt else '请基于当前内容,自然地延续剧情,写一个完整的段落。'
user_prompt = (
f"### 背景设定与大纲\n{full_context}\n"
f"### 当前已写内容 (末尾部分)\n{editor_content[-2000:]}\n\n"
f"### 用户指令\n{user_instruction}"
)
# 4. Call LLM
model_handler = ModelHandler()
response_generator = model_handler.generate_code(
system_prompt=system_prompt,
user_prompt=user_prompt,
model_choice=LING_1T
)
full_response = "".join(chunk for chunk in response_generator)
return full_response.strip()
except Exception as e:
print(f"[Agent] Error fetching paragraph continuation: {e}")
return f"获取续写时出错: {e}"