cesparzaf commited on
Commit
0814a9f
·
verified ·
1 Parent(s): f2e20a6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +83 -140
app.py CHANGED
@@ -1,12 +1,16 @@
1
 
2
- # app.py — MG360 (24 ítems) · Gradio Space
3
  from dataclasses import dataclass
4
  from typing import List, Dict, Tuple
5
  from datetime import datetime
6
  from pathlib import Path
7
- import os, math, json, requests
 
 
 
 
 
8
 
9
- # ========== Núcleo MG360 (24 ítems) ==========
10
  @dataclass(frozen=True)
11
  class Item:
12
  code: str
@@ -14,6 +18,7 @@ class Item:
14
  dimension: str # "COG", "EMO", "REL", "EJE"
15
  reverse: bool
16
 
 
17
  ITEMS: List[Item] = [
18
  # Cognitiva (COG)
19
  Item("COG1", "Antes de decidir, evalúo cómo una acción afecta a otras áreas.", "COG", False),
@@ -54,24 +59,25 @@ DIMENSION_LABELS = {
54
  }
55
 
56
  def invert_if_needed(value: float, reverse: bool) -> float:
 
57
  return 6 - value if reverse else value
58
 
59
  def score_responses(responses: Dict[str, float]) -> Dict[str, float]:
 
60
  dim_values = {d: [] for d in DIMENSIONS}
61
- for code, v in responses.items():
62
- # Validación 1..5
63
- fv = float(v)
64
- if not (1 <= fv <= 5):
65
- raise ValueError(f"Respuesta fuera de 1-5 en {code}: {fv}")
66
- # Cálculo
67
  for it in ITEMS:
 
 
68
  v = float(responses[it.code])
 
 
69
  dim_values[it.dimension].append(invert_if_needed(v, it.reverse))
 
70
  dim_avg = {d: sum(vals)/len(vals) for d, vals in dim_values.items()}
71
  vals = list(dim_avg.values())
72
  avg = sum(vals)/len(vals)
73
  var = sum((x-avg)**2 for x in vals) / len(vals)
74
- stdev = (var ** 0.5)
75
  balance_360 = 1 - (stdev / avg) if avg > 0 else 0.0
76
  return {**dim_avg, "BALANCE_360": balance_360}
77
 
@@ -80,6 +86,7 @@ def dominant_axis(dim_scores: Dict[str, float]) -> Tuple[str, float]:
80
  return best_dim, dim_scores[best_dim]
81
 
82
  def interpret(dim_scores: Dict[str, float]) -> Dict[str, str]:
 
83
  bal = dim_scores["BALANCE_360"]
84
  if bal > 0.85:
85
  eq = "Mentalidad 360 desarrollada"
@@ -94,45 +101,68 @@ def interpret(dim_scores: Dict[str, float]) -> Dict[str, str]:
94
  "REL": "Conector colaborativo (Relacional)",
95
  "EJE": "Gestor ejecutor (Ejecucional)",
96
  }
97
- return {"equilibrio": eq, "eje_dominante": f"{perfiles[best]} — {DIMENSION_LABELS[best]} ({val:.2f}/5)"}
 
 
 
 
 
 
 
98
 
99
- # ========== Radar limpio y simétrico ==========
100
  def radar_plot(dim_scores: Dict[str, float], title: str, out_png: str) -> str:
 
 
 
 
 
 
 
101
  import numpy as np
102
  import matplotlib.pyplot as plt
103
 
 
104
  DIM_ORDER = ["COG", "EMO", "REL", "EJE"]
105
  labels = [DIMENSION_LABELS[d] for d in DIM_ORDER]
106
  vals = [float(dim_scores[d]) for d in DIM_ORDER]
107
 
 
108
  angles = np.linspace(0, 2*np.pi, len(labels), endpoint=False)
 
109
  angles_cycle = np.concatenate([angles, [angles[0]]])
110
  vals_cycle = np.concatenate([vals, [vals[0]]])
111
 
 
112
  fig = plt.figure(figsize=(8, 8))
113
  ax = plt.subplot(111, polar=True)
114
  ax.set_facecolor("white")
115
- fig.subplots_adjust(bottom=0.18)
116
 
 
117
  ax.set_theta_offset(np.pi / 2)
118
  ax.set_theta_direction(-1)
119
 
 
120
  ax.set_xticks(angles)
121
  ax.set_xticklabels(labels, fontsize=14, fontweight="bold")
122
 
 
123
  ax.set_ylim(0, 5)
124
  ax.set_yticks([1, 2, 3, 4, 5])
125
  ax.set_yticklabels(["1", "2", "3", "4", "5"], fontsize=11)
126
  ax.yaxis.grid(True, linewidth=0.8, alpha=0.6)
127
  ax.xaxis.grid(True, linewidth=0.8, alpha=0.6)
128
 
 
129
  ax.plot(angles_cycle, vals_cycle, linewidth=2.2)
130
  ax.fill(angles_cycle, vals_cycle, alpha=0.18)
131
 
 
132
  for ang, v in zip(angles, vals):
133
  ax.plot([ang], [v], marker="o", markersize=6)
134
- ax.text(ang, min(5, v + 0.22), f"{v:.2f}", ha="center", va="center", fontsize=11, fontweight="bold")
 
135
 
 
136
  ax.set_title(title, fontsize=22, fontweight="bold", pad=18)
137
  bal = float(dim_scores.get("BALANCE_360", 0.0))
138
  dom = max(DIM_ORDER, key=lambda d: dim_scores[d])
@@ -144,94 +174,17 @@ def radar_plot(dim_scores: Dict[str, float], title: str, out_png: str) -> str:
144
  plt.close(fig)
145
  return out_png
146
 
147
- # ========== Prompt + LLM (Phi, InferenceClient) ==========
148
- from huggingface_hub import InferenceClient
149
 
150
- HF_MODEL_ID = os.environ.get("HF_MODEL_ID", "microsoft/Phi-3.5-mini-instruct")
151
- HF_TOKEN = os.environ.get("HF_TOKEN", None) # define esto en "Settings → Variables & secrets" del Space
152
-
153
- def build_prompt(scores: Dict[str, float], inter: Dict[str, str]) -> str:
154
- lines = [
155
- "Eres un coach ejecutivo experto en ICB4 (People, Practice, Perspective).",
156
- "Con base en el siguiente diagnóstico MG360 (1–5), genera un plan de desarrollo práctico, accionable y medible.",
157
- "",
158
- "Resultados por eje:",
159
- f"- Cognitiva: {scores['COG']:.2f}/5",
160
- f"- Emocional: {scores['EMO']:.2f}/5",
161
- f"- Relacional: {scores['REL']:.2f}/5",
162
- f"- Ejecucional:{scores['EJE']:.2f}/5",
163
- f"- Balance 360: {scores['BALANCE_360']:.3f}",
164
- f"- Interpretación: {inter['equilibrio']} | {inter['eje_dominante']}",
165
- "",
166
- "Instrucciones de salida:",
167
- "1) Empieza con un resumen de 2–3 líneas del perfil.",
168
- "2) Para cada eje (Cognitiva, Emocional, Relacional, Ejecucional):",
169
- " - Da 3 acciones SMART (específicas, medibles, con plazos).",
170
- " - Incluye 1 indicador sugerido y 1 hábito semanal.",
171
- "3) Cierra con un plan de 30 días (semanas 1–4) y riesgos comunes.",
172
- ]
173
- return "\\n".join(lines)
174
-
175
- def generate_plan_with_phi(prompt: str) -> str:
176
- # Sin token: devolvemos aviso (el usuario puede definir HF_TOKEN en Secrets)
177
- if not HF_TOKEN:
178
- return ("[Aviso] Falta HF_TOKEN. Configúralo como variable de entorno "
179
- "en tu Space (Settings → Variables & secrets).")
180
-
181
- # 1) Intento con InferenceClient
182
- try:
183
- client = InferenceClient(HF_MODEL_ID, token=HF_TOKEN, timeout=180)
184
- out = client.text_generation(
185
- prompt,
186
- max_new_tokens=600,
187
- do_sample=True,
188
- temperature=0.7,
189
- top_p=0.9,
190
- repetition_penalty=1.05,
191
- return_full_text=False,
192
- )
193
- return out.strip()
194
- except Exception as e:
195
- err1 = f"[InferenceClient] {type(e).__name__}: {e}"
196
-
197
- # 2) Fallback vía REST
198
- try:
199
- url = f"https://api-inference.huggingface.co/models/{HF_MODEL_ID}"
200
- headers = {"Authorization": f"Bearer {HF_TOKEN}"}
201
- payload = {
202
- "inputs": prompt,
203
- "parameters": {
204
- "max_new_tokens": 600,
205
- "do_sample": True,
206
- "temperature": 0.7,
207
- "top_p": 0.9,
208
- "repetition_penalty": 1.05,
209
- "return_full_text": False
210
- }
211
- }
212
- r = requests.post(url, headers=headers, json=payload, timeout=180)
213
- if r.status_code == 503:
214
- return (f"[HF 503] El modelo {HF_MODEL_ID} está cargando o sin recurso. "
215
- f"Detalle: {r.text}")
216
- r.raise_for_status()
217
- data = r.json()
218
- if isinstance(data, list) and data and "generated_text" in data[0]:
219
- return data[0]["generated_text"].strip()
220
- if isinstance(data, dict) and "generated_text" in data:
221
- return data["generated_text"].strip()
222
- if isinstance(data, dict) and "error" in data:
223
- return f"[HF error] {data.get('error')}"
224
- return f"[HF respuesta inesperada] {json.dumps(data)[:400]}..."
225
- except Exception as e2:
226
- err2 = f"[REST] {type(e2).__name__}: {e2}"
227
- return f"[Error al llamar al modelo {HF_MODEL_ID}]\\n{err1}\\n{err2}"
228
-
229
- # ========== Utilidades Gradio ==========
230
  def items_schema() -> List[Dict[str, str]]:
231
  return [{"code": it.code, "text": it.text, "dimension": DIMENSION_LABELS[it.dimension], "reverse": it.reverse} for it in ITEMS]
232
 
233
  def _ensure_outdir() -> Path:
234
- out_dir = Path("mg360_resultados"); out_dir.mkdir(parents=True, exist_ok=True); return out_dir
 
 
235
 
236
  def _evaluate_internal(res_vals: List[int]):
237
  schema = items_schema()
@@ -248,7 +201,7 @@ def _evaluate_internal(res_vals: List[int]):
248
  with open(out_json, "w", encoding="utf-8") as f:
249
  json.dump({"responses": responses, "scores": scores, "interpretation": inter}, f, ensure_ascii=False, indent=2)
250
 
251
- # Texto de resultados
252
  md = [
253
  "**Resultados**",
254
  *(f"- {DIMENSION_LABELS[d]}: {scores[d]:.2f}/5" for d in ["COG","EMO","REL","EJE"]),
@@ -258,47 +211,37 @@ def _evaluate_internal(res_vals: List[int]):
258
  f"- Equilibrio: {inter['equilibrio']}",
259
  f"- Eje dominante: {inter['eje_dominante']}",
260
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261
 
262
- # Plan de desarrollo (IA)
263
- plan_prompt = build_prompt(scores, inter)
264
- plan_text = generate_plan_with_phi(plan_prompt)
265
-
266
- return str(out_png), "\\n".join(md), json.dumps({"responses": responses, "scores": scores, "interpretation": inter}, ensure_ascii=False, indent=2), plan_text
267
-
268
- # ========== App Gradio ==========
269
- import gradio as gr
270
-
271
- schema = items_schema()
272
- with gr.Blocks() as demo:
273
- gr.Markdown("# Test MG360 (24 ítems) — Versión Avanzada + Plan IA")
274
- gr.Markdown("**Escala 1–5:** 1=**Nunca**, 2=**Rara vez**, 3=**A veces**, 4=**Frecuente**, 5=**Siempre**.")
275
-
276
- with gr.Accordion("Cuestionario (24 ítems)", open=True):
277
- gr.Markdown("### Guía de escala: 1=**Nunca** · 2=**Rara vez** · 3=**A veces** · 4=**Frecuente** · 5=**Siempre**")
278
- sliders = [
279
- gr.Slider(1, 5, step=1, value=3,
280
- label=f"{it['code']} — {it['text']} (1 Nunca · 2 Rara vez · 3 A veces · 4 Frecuente · 5 Siempre)")
281
- for it in schema
282
- ]
283
-
284
- with gr.Row():
285
- btn = gr.Button("Evaluar", scale=1)
286
- model_id = gr.Textbox(value=HF_MODEL_ID, label="HF_MODEL_ID (opcional)", scale=3)
287
- img = gr.Image(type="filepath", label="Radar 4D (1–5)")
288
- md = gr.Markdown()
289
- js = gr.Code(language="json", label="Reporte (JSON)")
290
- plan= gr.Markdown(label="Plan de desarrollo (IA)")
291
-
292
- def evaluate(*vals):
293
- # Permitir override del modelo por UI (no persiste, solo en sesión)
294
- global HF_MODEL_ID
295
- vals=list(vals)
296
- HF_MODEL_ID = vals.pop() or HF_MODEL_ID
297
- return _evaluate_internal(vals)
298
-
299
- inputs = sliders + [model_id]
300
- btn.click(fn=evaluate, inputs=inputs, outputs=[img, md, js, plan])
301
-
302
- # Para ejecución local:
303
- if __name__ == "__main__":
304
  demo.launch()
 
 
 
 
1
 
2
+
3
  from dataclasses import dataclass
4
  from typing import List, Dict, Tuple
5
  from datetime import datetime
6
  from pathlib import Path
7
+ import math
8
+ import json
9
+
10
+ # ============================
11
+ # Núcleo MG360 (24 ítems)
12
+ # ============================
13
 
 
14
  @dataclass(frozen=True)
15
  class Item:
16
  code: str
 
18
  dimension: str # "COG", "EMO", "REL", "EJE"
19
  reverse: bool
20
 
21
+ # 24 ítems: 6 por eje (3 directos + 3 inversos)
22
  ITEMS: List[Item] = [
23
  # Cognitiva (COG)
24
  Item("COG1", "Antes de decidir, evalúo cómo una acción afecta a otras áreas.", "COG", False),
 
59
  }
60
 
61
  def invert_if_needed(value: float, reverse: bool) -> float:
62
+ """Invierte Likert 1–5 cuando el ítem es inverso (6 - v)."""
63
  return 6 - value if reverse else value
64
 
65
  def score_responses(responses: Dict[str, float]) -> Dict[str, float]:
66
+ """Calcula promedios por dimensión y BALANCE_360."""
67
  dim_values = {d: [] for d in DIMENSIONS}
 
 
 
 
 
 
68
  for it in ITEMS:
69
+ if it.code not in responses:
70
+ raise ValueError(f"Falta respuesta para {it.code}")
71
  v = float(responses[it.code])
72
+ if not (1 <= v <= 5):
73
+ raise ValueError(f"Respuesta fuera de rango 1-5 en {it.code}: {v}")
74
  dim_values[it.dimension].append(invert_if_needed(v, it.reverse))
75
+
76
  dim_avg = {d: sum(vals)/len(vals) for d, vals in dim_values.items()}
77
  vals = list(dim_avg.values())
78
  avg = sum(vals)/len(vals)
79
  var = sum((x-avg)**2 for x in vals) / len(vals)
80
+ stdev = math.sqrt(var)
81
  balance_360 = 1 - (stdev / avg) if avg > 0 else 0.0
82
  return {**dim_avg, "BALANCE_360": balance_360}
83
 
 
86
  return best_dim, dim_scores[best_dim]
87
 
88
  def interpret(dim_scores: Dict[str, float]) -> Dict[str, str]:
89
+ """Interpretación de equilibrio y eje dominante."""
90
  bal = dim_scores["BALANCE_360"]
91
  if bal > 0.85:
92
  eq = "Mentalidad 360 desarrollada"
 
101
  "REL": "Conector colaborativo (Relacional)",
102
  "EJE": "Gestor ejecutor (Ejecucional)",
103
  }
104
+ return {
105
+ "equilibrio": eq,
106
+ "eje_dominante": f"{perfiles[best]} — {DIMENSION_LABELS[best]} ({val:.2f}/5)"
107
+ }
108
+
109
+ # ============================
110
+ # Radar PRO (matplotlib)
111
+ # ============================
112
 
 
113
  def radar_plot(dim_scores: Dict[str, float], title: str, out_png: str) -> str:
114
+ """
115
+ Radar 4D limpio y simétrico (patrón estable):
116
+ - Círculo completo (0..2π)
117
+ - Cognitiva arriba, sentido horario
118
+ - Aros 1..5, etiquetas claras
119
+ - Valor numérico en cada eje
120
+ """
121
  import numpy as np
122
  import matplotlib.pyplot as plt
123
 
124
+ # Orden fijo de dimensiones (coincidirá con tus promedios)
125
  DIM_ORDER = ["COG", "EMO", "REL", "EJE"]
126
  labels = [DIMENSION_LABELS[d] for d in DIM_ORDER]
127
  vals = [float(dim_scores[d]) for d in DIM_ORDER]
128
 
129
+ # Cerrar polígono (repetimos primer punto al final)
130
  angles = np.linspace(0, 2*np.pi, len(labels), endpoint=False)
131
+ angles = np.roll(angles, -0) # no rotamos el orden base
132
  angles_cycle = np.concatenate([angles, [angles[0]]])
133
  vals_cycle = np.concatenate([vals, [vals[0]]])
134
 
135
+ # Lienzo polar
136
  fig = plt.figure(figsize=(8, 8))
137
  ax = plt.subplot(111, polar=True)
138
  ax.set_facecolor("white")
 
139
 
140
+ # Cognitiva arriba (90°) y sentido horario
141
  ax.set_theta_offset(np.pi / 2)
142
  ax.set_theta_direction(-1)
143
 
144
+ # Ticks de categorías
145
  ax.set_xticks(angles)
146
  ax.set_xticklabels(labels, fontsize=14, fontweight="bold")
147
 
148
+ # Radial 0–5 con aros visibles
149
  ax.set_ylim(0, 5)
150
  ax.set_yticks([1, 2, 3, 4, 5])
151
  ax.set_yticklabels(["1", "2", "3", "4", "5"], fontsize=11)
152
  ax.yaxis.grid(True, linewidth=0.8, alpha=0.6)
153
  ax.xaxis.grid(True, linewidth=0.8, alpha=0.6)
154
 
155
+ # Polígono (borde + relleno suave) — sin especificar colores
156
  ax.plot(angles_cycle, vals_cycle, linewidth=2.2)
157
  ax.fill(angles_cycle, vals_cycle, alpha=0.18)
158
 
159
+ # Marcadores + etiqueta de valor en cada eje
160
  for ang, v in zip(angles, vals):
161
  ax.plot([ang], [v], marker="o", markersize=6)
162
+ ax.text(ang, min(5, v + 0.22), f"{v:.2f}",
163
+ ha="center", va="center", fontsize=11, fontweight="bold")
164
 
165
+ # Títulos
166
  ax.set_title(title, fontsize=22, fontweight="bold", pad=18)
167
  bal = float(dim_scores.get("BALANCE_360", 0.0))
168
  dom = max(DIM_ORDER, key=lambda d: dim_scores[d])
 
174
  plt.close(fig)
175
  return out_png
176
 
 
 
177
 
178
+ # ============================
179
+ # Gradio App
180
+ # ============================
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
  def items_schema() -> List[Dict[str, str]]:
182
  return [{"code": it.code, "text": it.text, "dimension": DIMENSION_LABELS[it.dimension], "reverse": it.reverse} for it in ITEMS]
183
 
184
  def _ensure_outdir() -> Path:
185
+ out_dir = Path("mg360_resultados")
186
+ out_dir.mkdir(parents=True, exist_ok=True)
187
+ return out_dir
188
 
189
  def _evaluate_internal(res_vals: List[int]):
190
  schema = items_schema()
 
201
  with open(out_json, "w", encoding="utf-8") as f:
202
  json.dump({"responses": responses, "scores": scores, "interpretation": inter}, f, ensure_ascii=False, indent=2)
203
 
204
+ # Markdown de resultados
205
  md = [
206
  "**Resultados**",
207
  *(f"- {DIMENSION_LABELS[d]}: {scores[d]:.2f}/5" for d in ["COG","EMO","REL","EJE"]),
 
211
  f"- Equilibrio: {inter['equilibrio']}",
212
  f"- Eje dominante: {inter['eje_dominante']}",
213
  ]
214
+ return str(out_png), "\n".join(md), json.dumps({"responses": responses, "scores": scores, "interpretation": inter}, ensure_ascii=False, indent=2)
215
+
216
+ # ============ Lanzador Gradio ============
217
+ def main_gradio():
218
+ import gradio as gr
219
+ schema = items_schema()
220
+
221
+ with gr.Blocks() as demo:
222
+ gr.Markdown("# Test MG360 (24 ítems) — Versión Avanzada")
223
+ gr.Markdown("**Escala 1–5:** 1=**Nunca**, 2=**Rara vez**, 3=**A veces**, 4=**Frecuente**, 5=**Siempre**.")
224
+
225
+ with gr.Accordion("Cuestionario (24 ítems)", open=True):
226
+ gr.Markdown("### Guía de escala: 1=**Nunca** · 2=**Rara vez** · 3=**A veces** · 4=**Frecuente** · 5=**Siempre**")
227
+ sliders = [
228
+ gr.Slider(1, 5, step=1, value=3,
229
+ label=f"{it['code']} — {it['text']} (1 Nunca · 2 Rara vez · 3 A veces · 4 Frecuente · 5 Siempre)")
230
+ for it in schema
231
+ ]
232
+
233
+ btn = gr.Button("Evaluar")
234
+ img = gr.Image(type="filepath", label="Radar 4D (1–5)")
235
+ md = gr.Markdown()
236
+ js = gr.Code(language="json", label="Reporte (JSON)")
237
+
238
+ # Importante: la función acepta múltiples parámetros (uno por slider)
239
+ def evaluate(*vals):
240
+ return _evaluate_internal(list(vals))
241
+
242
+ btn.click(fn=evaluate, inputs=sliders, outputs=[img, md, js])
243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244
  demo.launch()
245
+
246
+ if __name__ == "__main__":
247
+ main_gradio()