cipherunhsiv's picture
Create app.py
faa2d08 verified
raw
history blame
4.47 kB
import requests
import pandas as pd
import plotly.graph_objects as go
from ultralytics import YOLO
import cv2
import time
import gradio as gr
API_KEY = "ITWJ6NDTF45CBTDO"
def get_stock_candlestick_data(symbol, interval="5min", output_size="compact"):
"""
Fetch stock candlestick data from Alpha Vantage.
"""
url = f"https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval={interval}&apikey={API_KEY}&outputsize={output_size}"
print(f"Fetching data from: {url}") # Debugging
response = requests.get(url)
if response.status_code == 200:
data = response.json()
print("API Response:", data) # Debugging
if f"Time Series ({interval})" in data:
return data[f"Time Series ({interval})"]
else:
print("Error: No candlestick data found in response.")
print(data)
return None
else:
print(f"Error fetching data: {response.status_code}")
print(response.text)
return None
def process_stock_candlestick_data(data):
"""
Process Alpha Vantage stock candlestick data into a DataFrame.
"""
rows = []
for timestamp, values in data.items():
rows.append({
"timestamp": timestamp,
"open": float(values["1. open"]),
"high": float(values["2. high"]),
"low": float(values["3. low"]),
"close": float(values["4. close"]),
"volume": float(values["5. volume"])
})
return pd.DataFrame(rows)
def generate_candlestick_chart(df, n=50):
"""
Generate a candlestick chart using Plotly with the last n data points.
"""
df = df.tail(n) # Use only the last n rows
fig = go.Figure(data=[go.Candlestick(
x=df["timestamp"],
open=df["open"],
high=df["high"],
low=df["low"],
close=df["close"]
)])
fig.update_layout(
title="Candlestick Chart",
xaxis_title="Time",
yaxis_title="Price",
xaxis_rangeslider_visible=False
)
# Removed fig.show() since Gradio will display the image
fig.write_image("candlestick.png")
def yolo_model(img_path, model):
"""
Run YOLO model on the image and count GAP UP and GAP DOWN patterns.
"""
results = model(img_path)
gap_up_count = 0
gap_down_count = 0
for result in results:
classes = result.boxes.cls
for cls in classes:
if cls == 0:
gap_down_count += 1
elif cls == 1:
gap_up_count += 1
annotated_image = result.plot()
return annotated_image, gap_up_count, gap_down_count
def detect_gap_patterns(symbol):
"""
Main function to fetch data, generate charts, and detect GAP patterns in near-real-time.
"""
model = YOLO("/content/best.pt") # Load model once outside the loop
while True:
data = get_stock_candlestick_data(symbol)
if not data:
print("Failed to fetch data. Retrying in 15 seconds.")
time.sleep(15)
continue # Retry instead of exiting
df = process_stock_candlestick_data(data)
generate_candlestick_chart(df, n=50) # Generate chart with last 50 candles
annotated_image, gap_up_count, gap_down_count = yolo_model("candlestick.png", model)
cv2.imwrite("annotated_output.png", annotated_image)
yield "annotated_output.png", gap_up_count, gap_down_count
time.sleep(15) # Wait 15 seconds to respect API rate limits
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# GAP Pattern Detection in Real-Time Stock Charts")
gr.Markdown("Enter a stock symbol (e.g., AAPL) to detect GAP UP and GAP DOWN patterns in near-real-time candlestick charts.")
with gr.Row():
symbol_input = gr.Textbox(label="Stock Symbol", placeholder="Enter a stock symbol (e.g., AAPL)")
submit_button = gr.Button("Start Real-Time Detection")
with gr.Row():
output_image = gr.Image(label="Annotated Candlestick Chart")
gap_up_output = gr.Textbox(label="GAP UP Count")
gap_down_output = gr.Textbox(label="GAP DOWN Count")
# Start real-time detection when the button is clicked
submit_button.click(
fn=detect_gap_patterns,
inputs=symbol_input,
outputs=[output_image, gap_up_output, gap_down_output]
)
# Launch the Gradio app
demo.launch(share=True, debug=True)