Spaces:
Sleeping
Sleeping
File size: 8,080 Bytes
fc69895 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
---
title: Chat Ui
emoji: 🐠
colorFrom: pink
colorTo: gray
sdk: docker
pinned: false
app_port: 3000
---
# Chat UI

A chat interface for LLMs. It is a SvelteKit app and it powers the [HuggingChat app on hf.co/chat](https://huggingface.co/chat).
0. [Quickstart](#quickstart)
1. [Database Options](#database-options)
2. [Launch](#launch)
3. [Optional Docker Image](#optional-docker-image)
4. [Extra parameters](#extra-parameters)
5. [Building](#building)
> [!NOTE]
> Chat UI only supports OpenAI-compatible APIs via `OPENAI_BASE_URL` and the `/models` endpoint. Provider-specific integrations (legacy `MODELS` env var, GGUF discovery, embeddings, web-search helpers, etc.) are removed, but any service that speaks the OpenAI protocol (llama.cpp server, Ollama, OpenRouter, etc. will work by default).
> [!NOTE]
> The old version is still available on the [legacy branch](https://github.com/huggingface/chat-ui/tree/legacy)
## Quickstart
Chat UI speaks to OpenAI-compatible APIs only. The fastest way to get running is with the Hugging Face Inference Providers router plus your personal Hugging Face access token.
**Step 1 – Create `.env.local`:**
```env
OPENAI_BASE_URL=https://router.huggingface.co/v1
OPENAI_API_KEY=hf_************************
# Fill in once you pick a database option below
MONGODB_URL=
```
`OPENAI_API_KEY` can come from any OpenAI-compatible endpoint you plan to call. Pick the combo that matches your setup and drop the values into `.env.local`:
| Provider | Example `OPENAI_BASE_URL` | Example key env |
| --------------------------------------------- | ---------------------------------- | ----------------------------------------------------------------------- |
| Hugging Face Inference Providers router | `https://router.huggingface.co/v1` | `OPENAI_API_KEY=hf_xxx` (or `HF_TOKEN` legacy alias) |
| llama.cpp server (`llama.cpp --server --api`) | `http://127.0.0.1:8080/v1` | `OPENAI_API_KEY=sk-local-demo` (any string works; llama.cpp ignores it) |
| Ollama (with OpenAI-compatible bridge) | `http://127.0.0.1:11434/v1` | `OPENAI_API_KEY=ollama` |
| OpenRouter | `https://openrouter.ai/api/v1` | `OPENAI_API_KEY=sk-or-v1-...` |
| Poe | `https://api.poe.com/v1` | `OPENAI_API_KEY=pk_...` |
Check the root [`.env` template](./.env) for the full list of optional variables you can override.
**Step 2 – Choose where MongoDB lives:** Either provision a managed cluster (for example MongoDB Atlas) or run a local container. Both approaches are described in [Database Options](#database-options). After you have the URI, drop it into `MONGODB_URL` (and, if desired, set `MONGODB_DB_NAME`).
**Step 3 – Install and launch the dev server:**
```bash
git clone https://github.com/huggingface/chat-ui
cd chat-ui
npm install
npm run dev -- --open
```
You now have Chat UI running against the Hugging Face router without needing to host MongoDB yourself.
## Database Options
Chat history, users, settings, files, and stats all live in MongoDB. You can point Chat UI at any MongoDB 6/7 deployment.
### MongoDB Atlas (managed)
1. Create a free cluster at [mongodb.com](https://www.mongodb.com/pricing).
2. Add your IP (or `0.0.0.0/0` for development) to the network access list.
3. Create a database user and copy the connection string.
4. Paste that string into `MONGODB_URL` in `.env.local`. Keep the default `MONGODB_DB_NAME=chat-ui` or change it per environment.
Atlas keeps MongoDB off your laptop, which is ideal for teams or cloud deployments.
### Local MongoDB (container)
If you prefer to run MongoDB locally:
```bash
docker run -d -p 27017:27017 --name mongo-chatui mongo:latest
```
Then set `MONGODB_URL=mongodb://localhost:27017` in `.env.local`. You can also supply `MONGO_STORAGE_PATH` if you want Chat UI’s fallback in-memory server to persist under a specific folder.
## Launch
After configuring your environment variables, start Chat UI with:
```bash
npm install
npm run dev
```
The dev server listens on `http://localhost:5173` by default. Use `npm run build` / `npm run preview` for production builds.
## Optional Docker Image
Prefer containerized setup? You can run everything in one container as long as you supply a MongoDB URI (local or hosted):
```bash
docker run \
-p 3000 \
-e MONGODB_URL=mongodb://host.docker.internal:27017 \
-e OPENAI_BASE_URL=https://router.huggingface.co/v1 \
-e OPENAI_API_KEY=hf_*** \
-v db:/data \
ghcr.io/huggingface/chat-ui-db:latest
```
`host.docker.internal` lets the container reach a MongoDB instance on your host machine; swap it for your Atlas URI if you use the hosted option. All environment variables accepted in `.env.local` can be provided as `-e` flags.
## Extra parameters
### Theming
You can use a few environment variables to customize the look and feel of chat-ui. These are by default:
```env
PUBLIC_APP_NAME=ChatUI
PUBLIC_APP_ASSETS=chatui
PUBLIC_APP_DESCRIPTION="Making the community's best AI chat models available to everyone."
PUBLIC_APP_DATA_SHARING=
```
- `PUBLIC_APP_NAME` The name used as a title throughout the app.
- `PUBLIC_APP_ASSETS` Is used to find logos & favicons in `static/$PUBLIC_APP_ASSETS`, current options are `chatui` and `huggingchat`.
- `PUBLIC_APP_DATA_SHARING` Can be set to 1 to add a toggle in the user settings that lets your users opt-in to data sharing with models creator.
### Models
This build does not use the `MODELS` env var or GGUF discovery. Configure models via `OPENAI_BASE_URL` only; Chat UI will fetch `${OPENAI_BASE_URL}/models` and populate the list automatically. Authorization uses `OPENAI_API_KEY` (preferred). `HF_TOKEN` remains a legacy alias.
### LLM Router (Optional)
Chat UI can perform client-side routing [katanemo/Arch-Router-1.5B](https://huggingface.co/katanemo/Arch-Router-1.5B) as the routing model without running a separate router service. The UI exposes a virtual model alias called "Omni" (configurable) that, when selected, chooses the best route/model for each message.
- Provide a routes policy JSON via `LLM_ROUTER_ROUTES_PATH`. No sample file ships with this branch, so you must point the variable to a JSON array you create yourself (for example, commit one in your project like `config/routes.chat.json`). Each route entry needs `name`, `description`, `primary_model`, and optional `fallback_models`.
- Configure the Arch router selection endpoint with `LLM_ROUTER_ARCH_BASE_URL` (OpenAI-compatible `/chat/completions`) and `LLM_ROUTER_ARCH_MODEL` (e.g. `router/omni`). The Arch call reuses `OPENAI_API_KEY` for auth.
- Map `other` to a concrete route via `LLM_ROUTER_OTHER_ROUTE` (default: `casual_conversation`). If Arch selection fails, calls fall back to `LLM_ROUTER_FALLBACK_MODEL`.
- Selection timeout can be tuned via `LLM_ROUTER_ARCH_TIMEOUT_MS` (default 10000).
- Omni alias configuration: `PUBLIC_LLM_ROUTER_ALIAS_ID` (default `omni`), `PUBLIC_LLM_ROUTER_DISPLAY_NAME` (default `Omni`), and optional `PUBLIC_LLM_ROUTER_LOGO_URL`.
When you select Omni in the UI, Chat UI will:
- Call the Arch endpoint once (non-streaming) to pick the best route for the last turns.
- Emit RouterMetadata immediately (route and actual model used) so the UI can display it.
- Stream from the selected model via your configured `OPENAI_BASE_URL`. On errors, it tries route fallbacks.
## Building
To create a production version of your app:
```bash
npm run build
```
You can preview the production build with `npm run preview`.
> To deploy your app, you may need to install an [adapter](https://kit.svelte.dev/docs/adapters) for your target environment.
|