Spaces:
Running
on
Zero
Running
on
Zero
| import subprocess # π₯² | |
| subprocess.run( | |
| "pip install flash-attn --no-build-isolation", | |
| env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
| shell=True, | |
| ) | |
| import spaces | |
| import gradio as gr | |
| import re | |
| from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor | |
| from qwen_vl_utils import process_vision_info | |
| import torch | |
| import os | |
| import json | |
| from pydantic import BaseModel | |
| from typing import Tuple | |
| os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
| model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| "Qwen/Qwen2.5-VL-7B-Instruct", | |
| torch_dtype=torch.bfloat16, | |
| attn_implementation="flash_attention_2", | |
| device_map="auto", | |
| ) | |
| processor = AutoProcessor.from_pretrained( | |
| "Qwen/Qwen2.5-VL-7B-Instruct", | |
| ) | |
| class GeneralRetrievalQuery(BaseModel): | |
| broad_topical_query: str | |
| broad_topical_explanation: str | |
| specific_detail_query: str | |
| specific_detail_explanation: str | |
| visual_element_query: str | |
| visual_element_explanation: str | |
| def extract_json_with_regex(text): | |
| # Pattern to match content between code backticks | |
| pattern = r'```(?:json)?\s*(.+?)\s*```' | |
| # Find all matches (should typically be one) | |
| matches = re.findall(pattern, text, re.DOTALL) | |
| if matches: | |
| # Return the first match | |
| return matches[0] | |
| return None | |
| def get_retrieval_prompt(prompt_name: str) -> Tuple[str, GeneralRetrievalQuery]: | |
| if prompt_name != "general": | |
| raise ValueError("Only 'general' prompt is available in this version") | |
| prompt = """You are an AI assistant specialized in document retrieval tasks. Given an image of a document page, your task is to generate retrieval queries that someone might use to find this document in a large corpus. | |
| Please generate 3 different types of retrieval queries: | |
| 1. A broad topical query: This should cover the main subject of the document. | |
| 2. A specific detail query: This should focus on a particular fact, figure, or point made in the document. | |
| 3. A visual element query: This should reference a chart, graph, image, or other visual component in the document, if present. Don't just reference the name of the visual element but generate a query which this illustration may help answer or be related to. | |
| Important guidelines: | |
| - Ensure the queries are relevant for retrieval tasks, not just describing the page content. | |
| - Frame the queries as if someone is searching for this document, not asking questions about its content. | |
| - Make the queries diverse and representative of different search strategies. | |
| For each query, also provide a brief explanation of why this query would be effective in retrieving this document. | |
| Format your response as a JSON object with the following structure: | |
| { | |
| "broad_topical_query": "Your query here", | |
| "broad_topical_explanation": "Brief explanation", | |
| "specific_detail_query": "Your query here", | |
| "specific_detail_explanation": "Brief explanation", | |
| "visual_element_query": "Your query here", | |
| "visual_element_explanation": "Brief explanation" | |
| } | |
| If there are no relevant visual elements, replace the third query with another specific detail query. | |
| Here is the document image to analyze: | |
| <image> | |
| Generate the queries based on this image and provide the response in the specified JSON format.""" | |
| return prompt, GeneralRetrievalQuery | |
| # defined like this so we can later add more prompting options | |
| prompt, pydantic_model = get_retrieval_prompt("general") | |
| def _prep_data_for_input(image): | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "image": image, | |
| }, | |
| {"type": "text", "text": prompt}, | |
| ], | |
| } | |
| ] | |
| text = processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| return processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| def generate_response(image): | |
| inputs = _prep_data_for_input(image) | |
| inputs = inputs.to("cuda") | |
| generated_ids = model.generate(**inputs, max_new_tokens=200) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids) :] | |
| for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, | |
| skip_special_tokens=True, | |
| clean_up_tokenization_spaces=False, | |
| )[0] | |
| try: | |
| # Try to extract JSON from code block first | |
| json_str = extract_json_with_regex(output_text) | |
| if json_str: | |
| parsed = json.loads(json_str) | |
| return json.dumps(parsed, indent=2) | |
| # If no code block found, try direct JSON parsing | |
| parsed = json.loads(output_text) | |
| return json.dumps(parsed, indent=2) | |
| except Exception: | |
| gr.Warning("Failed to parse JSON from output") | |
| return output_text | |
| title = "ColPali Query Generator using Qwen2.5-VL" | |
| description = """[ColPali](https://huggingface.co/papers/2407.01449) is a very exciting new approach to multimodal document retrieval which aims to replace existing document retrievers which often rely on an OCR step with an end-to-end multimodal approach. | |
| To train or fine-tune a ColPali model, we need a dataset of image-text pairs which represent the document images and the relevant text queries which those documents should match. | |
| To make the ColPali models work even better we might want a dataset of query/image document pairs related to our domain or task. | |
| One way in which we might go about generating such a dataset is to use a VLM to generate synthetic queries for us. | |
| This space uses the [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) VLM model to generate queries for a document, based on an input document image. | |
| **Note** there is a lot of scope for improving to prompts and the quality of the generated queries! If you have any suggestions for improvements please [open a Discussion](https://huggingface.co/spaces/davanstrien/ColPali-Query-Generator/discussions/new)! | |
| This [blog post](https://danielvanstrien.xyz/posts/post-with-code/colpali/2024-09-23-generate_colpali_dataset.html) gives an overview of how you can use this kind of approach to generate a full dataset for fine-tuning ColPali models. | |
| If you want to convert a PDF(s) to a dataset of page images you can try out the [ PDFs to Page Images Converter](https://huggingface.co/spaces/Dataset-Creation-Tools/pdf-to-page-images-dataset) Space. | |
| """ | |
| examples = [ | |
| "examples/Approche_no_13_1977.pdf_page_22.jpg", | |
| "examples/SRCCL_Technical-Summary.pdf_page_7.jpg", | |
| ] | |
| demo = gr.Interface( | |
| fn=generate_response, | |
| inputs=gr.Image(type="pil"), | |
| outputs=gr.Text(), | |
| title=title, | |
| description=description, | |
| examples=examples, | |
| ) | |
| demo.launch() |