Spaces:
Running
on
Zero
Running
on
Zero
switch to qwen2.5 vl (#2)
Browse files- switch to qwen2.5 vl (4480433cdbbbd3f77e86e967a2fa97e95417b18b)
app.py
CHANGED
|
@@ -1,14 +1,15 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
# subprocess.run(
|
| 4 |
-
# "pip install flash-attn --no-build-isolation",
|
| 5 |
-
# env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
| 6 |
-
# shell=True,
|
| 7 |
-
# )
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
import spaces
|
| 10 |
import gradio as gr
|
| 11 |
-
|
|
|
|
|
|
|
| 12 |
import torch
|
| 13 |
import os
|
| 14 |
import json
|
|
@@ -17,19 +18,15 @@ from typing import Tuple
|
|
| 17 |
|
| 18 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 19 |
|
| 20 |
-
|
| 21 |
-
model =
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
device_map=
|
| 26 |
-
)
|
| 27 |
-
processor = AutoProcessor.from_pretrained(
|
| 28 |
-
'allenai/Molmo-7B-D-0924',
|
| 29 |
-
trust_remote_code=True,
|
| 30 |
-
torch_dtype='auto',
|
| 31 |
-
device_map='auto'
|
| 32 |
)
|
|
|
|
|
|
|
| 33 |
|
| 34 |
class GeneralRetrievalQuery(BaseModel):
|
| 35 |
broad_topical_query: str
|
|
@@ -39,6 +36,7 @@ class GeneralRetrievalQuery(BaseModel):
|
|
| 39 |
visual_element_query: str
|
| 40 |
visual_element_explanation: str
|
| 41 |
|
|
|
|
| 42 |
def get_retrieval_prompt(prompt_name: str) -> Tuple[str, GeneralRetrievalQuery]:
|
| 43 |
if prompt_name != "general":
|
| 44 |
raise ValueError("Only 'general' prompt is available in this version")
|
|
@@ -72,46 +70,77 @@ Format your response as a JSON object with the following structure:
|
|
| 72 |
If there are no relevant visual elements, replace the third query with another specific detail query.
|
| 73 |
|
| 74 |
Here is the document image to analyze:
|
|
|
|
| 75 |
|
| 76 |
-
Generate the queries based on this image and provide the response in the specified JSON format.
|
| 77 |
-
Only return JSON. Don't return any extra explanation text. """
|
| 78 |
|
| 79 |
return prompt, GeneralRetrievalQuery
|
| 80 |
|
|
|
|
|
|
|
| 81 |
prompt, pydantic_model = get_retrieval_prompt("general")
|
| 82 |
|
|
|
|
| 83 |
def _prep_data_for_input(image):
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
)
|
| 88 |
|
| 89 |
-
|
|
|
|
| 90 |
def generate_response(image):
|
| 91 |
inputs = _prep_data_for_input(image)
|
| 92 |
-
inputs =
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
)
|
| 98 |
-
generated_tokens = output[0, inputs['input_ids'].size(1):]
|
| 99 |
-
output_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 100 |
-
|
| 101 |
try:
|
| 102 |
-
return
|
| 103 |
except Exception:
|
| 104 |
gr.Warning("Failed to parse JSON from output")
|
| 105 |
-
return
|
|
|
|
| 106 |
|
| 107 |
-
title = "ColPali
|
| 108 |
description = """[ColPali](https://huggingface.co/papers/2407.01449) is a very exciting new approach to multimodal document retrieval which aims to replace existing document retrievers which often rely on an OCR step with an end-to-end multimodal approach.
|
| 109 |
|
| 110 |
To train or fine-tune a ColPali model, we need a dataset of image-text pairs which represent the document images and the relevant text queries which those documents should match.
|
| 111 |
To make the ColPali models work even better we might want a dataset of query/image document pairs related to our domain or task.
|
| 112 |
|
| 113 |
One way in which we might go about generating such a dataset is to use a VLM to generate synthetic queries for us.
|
| 114 |
-
This space uses the [
|
| 115 |
|
| 116 |
**Note** there is a lot of scope for improving to prompts and the quality of the generated queries! If you have any suggestions for improvements please [open a Discussion](https://huggingface.co/spaces/davanstrien/ColPali-Query-Generator/discussions/new)!
|
| 117 |
|
|
@@ -128,7 +157,7 @@ examples = [
|
|
| 128 |
demo = gr.Interface(
|
| 129 |
fn=generate_response,
|
| 130 |
inputs=gr.Image(type="pil"),
|
| 131 |
-
outputs=gr.
|
| 132 |
title=title,
|
| 133 |
description=description,
|
| 134 |
examples=examples,
|
|
|
|
| 1 |
+
import subprocess # 🥲
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
subprocess.run(
|
| 4 |
+
"pip install flash-attn --no-build-isolation",
|
| 5 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
| 6 |
+
shell=True,
|
| 7 |
+
)
|
| 8 |
import spaces
|
| 9 |
import gradio as gr
|
| 10 |
+
|
| 11 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
| 12 |
+
from qwen_vl_utils import process_vision_info
|
| 13 |
import torch
|
| 14 |
import os
|
| 15 |
import json
|
|
|
|
| 18 |
|
| 19 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 20 |
|
| 21 |
+
|
| 22 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 23 |
+
"Qwen/Qwen2.5-VL-7B-Instruct",
|
| 24 |
+
torch_dtype=torch.bfloat16,
|
| 25 |
+
attn_implementation="flash_attention_2",
|
| 26 |
+
device_map="auto",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
)
|
| 28 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
|
| 29 |
+
|
| 30 |
|
| 31 |
class GeneralRetrievalQuery(BaseModel):
|
| 32 |
broad_topical_query: str
|
|
|
|
| 36 |
visual_element_query: str
|
| 37 |
visual_element_explanation: str
|
| 38 |
|
| 39 |
+
|
| 40 |
def get_retrieval_prompt(prompt_name: str) -> Tuple[str, GeneralRetrievalQuery]:
|
| 41 |
if prompt_name != "general":
|
| 42 |
raise ValueError("Only 'general' prompt is available in this version")
|
|
|
|
| 70 |
If there are no relevant visual elements, replace the third query with another specific detail query.
|
| 71 |
|
| 72 |
Here is the document image to analyze:
|
| 73 |
+
<image>
|
| 74 |
|
| 75 |
+
Generate the queries based on this image and provide the response in the specified JSON format."""
|
|
|
|
| 76 |
|
| 77 |
return prompt, GeneralRetrievalQuery
|
| 78 |
|
| 79 |
+
|
| 80 |
+
# defined like this so we can later add more prompting options
|
| 81 |
prompt, pydantic_model = get_retrieval_prompt("general")
|
| 82 |
|
| 83 |
+
|
| 84 |
def _prep_data_for_input(image):
|
| 85 |
+
messages = [
|
| 86 |
+
{
|
| 87 |
+
"role": "user",
|
| 88 |
+
"content": [
|
| 89 |
+
{
|
| 90 |
+
"type": "image",
|
| 91 |
+
"image": image,
|
| 92 |
+
},
|
| 93 |
+
{"type": "text", "text": prompt},
|
| 94 |
+
],
|
| 95 |
+
}
|
| 96 |
+
]
|
| 97 |
+
|
| 98 |
+
text = processor.apply_chat_template(
|
| 99 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 103 |
+
|
| 104 |
+
return processor(
|
| 105 |
+
text=[text],
|
| 106 |
+
images=image_inputs,
|
| 107 |
+
videos=video_inputs,
|
| 108 |
+
padding=True,
|
| 109 |
+
return_tensors="pt",
|
| 110 |
)
|
| 111 |
|
| 112 |
+
|
| 113 |
+
@spaces.GPU
|
| 114 |
def generate_response(image):
|
| 115 |
inputs = _prep_data_for_input(image)
|
| 116 |
+
inputs = inputs.to("cuda")
|
| 117 |
+
|
| 118 |
+
generated_ids = model.generate(**inputs, max_new_tokens=200)
|
| 119 |
+
generated_ids_trimmed = [
|
| 120 |
+
out_ids[len(in_ids) :]
|
| 121 |
+
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 122 |
+
]
|
| 123 |
+
|
| 124 |
+
output_text = processor.batch_decode(
|
| 125 |
+
generated_ids_trimmed,
|
| 126 |
+
skip_special_tokens=True,
|
| 127 |
+
clean_up_tokenization_spaces=False,
|
| 128 |
)
|
|
|
|
|
|
|
|
|
|
| 129 |
try:
|
| 130 |
+
return json.loads(output_text[0])
|
| 131 |
except Exception:
|
| 132 |
gr.Warning("Failed to parse JSON from output")
|
| 133 |
+
return {}
|
| 134 |
+
|
| 135 |
|
| 136 |
+
title = "ColPali Query Generator using Qwen2.5-VL"
|
| 137 |
description = """[ColPali](https://huggingface.co/papers/2407.01449) is a very exciting new approach to multimodal document retrieval which aims to replace existing document retrievers which often rely on an OCR step with an end-to-end multimodal approach.
|
| 138 |
|
| 139 |
To train or fine-tune a ColPali model, we need a dataset of image-text pairs which represent the document images and the relevant text queries which those documents should match.
|
| 140 |
To make the ColPali models work even better we might want a dataset of query/image document pairs related to our domain or task.
|
| 141 |
|
| 142 |
One way in which we might go about generating such a dataset is to use a VLM to generate synthetic queries for us.
|
| 143 |
+
This space uses the [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) VLM model to generate queries for a document, based on an input document image.
|
| 144 |
|
| 145 |
**Note** there is a lot of scope for improving to prompts and the quality of the generated queries! If you have any suggestions for improvements please [open a Discussion](https://huggingface.co/spaces/davanstrien/ColPali-Query-Generator/discussions/new)!
|
| 146 |
|
|
|
|
| 157 |
demo = gr.Interface(
|
| 158 |
fn=generate_response,
|
| 159 |
inputs=gr.Image(type="pil"),
|
| 160 |
+
outputs=gr.Json(),
|
| 161 |
title=title,
|
| 162 |
description=description,
|
| 163 |
examples=examples,
|