Spaces:
Sleeping
Sleeping
| # from fastapi import FastAPI, HTTPException | |
| from fastapi import FastAPI | |
| from pydantic import BaseModel | |
| # import torch | |
| # from backend.inference_utils import load_model, run_inference | |
| # -- FastAPI app -- | |
| app = FastAPI() | |
| # -- Input Schema -- | |
| class InferenceRequest(BaseModel): | |
| model_name: str | |
| spectrum: list[float] | |
| def root(): | |
| return {"message": "Polymer Aging Inference API is online"} | |
| def infer(request: InferenceRequest): | |
| return{ | |
| "prediction": "Stubbed Output", | |
| "class_index": 0, | |
| "logits": [0.0, 1.0], | |
| "class_labels": ["Stub", "Output"], | |
| } | |
| # def infer(request: InferenceRequest): | |
| # try: | |
| # model = load_model(request.model_name) | |
| # result = run_inference(model, request.spectrum) | |
| # return result | |
| # except Exception as e: | |
| # raise HTTPException(status_code=500, detail=str(e)) from e |