Spaces:
Sleeping
Sleeping
devjas1
commited on
Commit
·
0a4f1a6
1
Parent(s):
6ea9614
(FEAT)[Data Parsing]: Support multi-format spectrum parsing and robust validation
Browse files- Added 'detect_file_format' to auto-detect file type based on extension and content.
- Implemented 'parse_json_spectrum', 'parse_csv_spectrum', and 'parse_txt_spectrum' for flexible parsing of spectroscopy data.
- Unified entry point 'parse_spectrum_data' uses format detection and delegates to appropriate parser.
- Added 'validate_spectrum_data' to check for NaNs, monotonic x-axis, and reasonable value ranges, with sorting and warnings as needed.
- Updated error handling and logging for parsing failures or unusual data.
- Docstrings and comments improved for clarity.
- utils/multifile.py +297 -56
utils/multifile.py
CHANGED
|
@@ -1,11 +1,16 @@
|
|
| 1 |
-
"""Multi-file processing
|
| 2 |
-
Handles multiple file uploads and iterative processing.
|
|
|
|
| 3 |
|
| 4 |
-
from typing import List, Dict, Any, Tuple, Optional
|
| 5 |
import time
|
| 6 |
import streamlit as st
|
| 7 |
import numpy as np
|
| 8 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
from .preprocessing import resample_spectrum
|
| 11 |
from .errors import ErrorHandler, safe_execute
|
|
@@ -13,83 +18,230 @@ from .results_manager import ResultsManager
|
|
| 13 |
from .confidence import calculate_softmax_confidence
|
| 14 |
|
| 15 |
|
| 16 |
-
def
|
| 17 |
-
|
| 18 |
-
) -> Tuple[np.ndarray, np.ndarray]:
|
| 19 |
-
"""
|
| 20 |
-
Parse spectrum data from text content
|
| 21 |
|
| 22 |
Args:
|
| 23 |
-
|
| 24 |
-
|
| 25 |
|
| 26 |
Returns:
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
Raises:
|
| 30 |
-
ValueError: If the data cannot be parsed
|
| 31 |
"""
|
| 32 |
-
try
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
data_lines.append(line)
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
|
| 45 |
-
# ==Try to parse==
|
| 46 |
-
x_vals, y_vals = [], []
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
x_vals.append(x_val)
|
| 64 |
y_vals.append(y_val)
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
except ValueError:
|
| 67 |
ErrorHandler.log_warning(
|
| 68 |
-
f"Could not parse
|
| 69 |
)
|
| 70 |
continue
|
| 71 |
|
| 72 |
-
if len(x_vals) < 10:
|
| 73 |
raise ValueError(
|
| 74 |
f"Insufficient data points ({len(x_vals)}). Need at least 10 points."
|
| 75 |
)
|
| 76 |
|
| 77 |
-
|
| 78 |
-
y = np.array(y_vals)
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
raise ValueError("Input data contains NaN values")
|
| 83 |
|
| 84 |
-
# Check monotonic increasing x
|
| 85 |
-
if not np.all(np.diff(x) > 0):
|
| 86 |
-
raise ValueError("Wavenumbers must be strictly increasing")
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
return x, y
|
| 95 |
|
|
@@ -97,6 +249,95 @@ def parse_spectrum_data(
|
|
| 97 |
raise ValueError(f"Failed to parse spectrum data: {str(e)}")
|
| 98 |
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
def process_single_file(
|
| 101 |
filename: str,
|
| 102 |
text_content: str,
|
|
|
|
| 1 |
+
"""Multi-file processing utilities for batch inference.
|
| 2 |
+
Handles multiple file uploads and iterative processing.
|
| 3 |
+
Supports TXT, CSV, and JSON file formats with automatic detection."""
|
| 4 |
|
| 5 |
+
from typing import List, Dict, Any, Tuple, Optional, Union
|
| 6 |
import time
|
| 7 |
import streamlit as st
|
| 8 |
import numpy as np
|
| 9 |
import pandas as pd
|
| 10 |
+
import json
|
| 11 |
+
import csv
|
| 12 |
+
import io
|
| 13 |
+
from pathlib import Path
|
| 14 |
|
| 15 |
from .preprocessing import resample_spectrum
|
| 16 |
from .errors import ErrorHandler, safe_execute
|
|
|
|
| 18 |
from .confidence import calculate_softmax_confidence
|
| 19 |
|
| 20 |
|
| 21 |
+
def detect_file_format(filename: str, content: str) -> str:
|
| 22 |
+
"""Automatically detect file format based on exstention and content
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
Args:
|
| 25 |
+
filename: Name of the file
|
| 26 |
+
content: Content of the file
|
| 27 |
|
| 28 |
Returns:
|
| 29 |
+
File format: .'txt', .'csv', .'json'
|
|
|
|
|
|
|
|
|
|
| 30 |
"""
|
| 31 |
+
# First try by extension
|
| 32 |
+
suffix = Path(filename).suffix.lower()
|
| 33 |
+
if suffix == ".json":
|
| 34 |
+
try:
|
| 35 |
+
json.loads(content)
|
| 36 |
+
return "json"
|
| 37 |
+
except:
|
| 38 |
+
pass
|
| 39 |
+
elif suffix == ".csv":
|
| 40 |
+
return "csv"
|
| 41 |
+
elif suffix == ".txt":
|
| 42 |
+
return "txt"
|
| 43 |
+
|
| 44 |
+
# If extension doesn't match or is unclear, try content detection
|
| 45 |
+
content_stripped = content.strip()
|
| 46 |
+
|
| 47 |
+
# Try JSON
|
| 48 |
+
if content_stripped.startswith(("{", "[")):
|
| 49 |
+
try:
|
| 50 |
+
json.loads(content)
|
| 51 |
+
return "json"
|
| 52 |
+
except:
|
| 53 |
+
pass
|
| 54 |
|
| 55 |
+
# Try CSV (look for commas in first few lines)
|
| 56 |
+
lines = content_stripped.split("\n")[:5]
|
| 57 |
+
comma_count = sum(line.count(",") for line in lines)
|
| 58 |
+
if comma_count > len(lines): # More commas than lines suggests CSV
|
| 59 |
+
return "csv"
|
|
|
|
| 60 |
|
| 61 |
+
# Default to TXT
|
| 62 |
+
return "txt"
|
| 63 |
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
# /////////////////////////////////////////////////////
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def parse_json_spectrum(
|
| 69 |
+
content: str, filename: str = "unknown"
|
| 70 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 71 |
+
"""
|
| 72 |
+
Parse spectrum data from JSON format.
|
| 73 |
+
|
| 74 |
+
Expected formats:
|
| 75 |
+
- {"wavenumbers": [...], "intensities": [...]}
|
| 76 |
+
- {"x": [...], "y": [...]}
|
| 77 |
+
- [{"wavenumber": val, "intensity": val}, ...]
|
| 78 |
+
"""
|
| 79 |
+
|
| 80 |
+
try:
|
| 81 |
+
data = json.load(content)
|
| 82 |
+
|
| 83 |
+
# Format 1: Object with arrays
|
| 84 |
+
if isinstance(data, dict):
|
| 85 |
+
x_key = None
|
| 86 |
+
y_key = None
|
| 87 |
+
|
| 88 |
+
# Try common key names for x-axis
|
| 89 |
+
for key in ["wavenumbers", "wavenumber", "x", "freq", "frequency"]:
|
| 90 |
+
if key in data:
|
| 91 |
+
x_key = key
|
| 92 |
+
break
|
| 93 |
+
|
| 94 |
+
# Try common key names for y-axis
|
| 95 |
+
for key in ["intensities", "intensity", "y", "counts", "absorbance"]:
|
| 96 |
+
if key in data:
|
| 97 |
+
y_key = key
|
| 98 |
+
break
|
| 99 |
+
|
| 100 |
+
if x_key and y_key:
|
| 101 |
+
x_vals = np.array(data[x_key], dtype=float)
|
| 102 |
+
y_vals = np.array(data[y_key], dtype=float)
|
| 103 |
+
return x_vals, y_vals
|
| 104 |
+
|
| 105 |
+
# Format 2: Array of objects
|
| 106 |
+
elif isinstance(data, list) and len(data) > 0 and isinstance(data[0], dict):
|
| 107 |
+
x_vals = []
|
| 108 |
+
y_vals = []
|
| 109 |
+
|
| 110 |
+
for item in data:
|
| 111 |
+
# Try to find x and y values
|
| 112 |
+
x_val = None
|
| 113 |
+
y_val = None
|
| 114 |
+
|
| 115 |
+
for x_key in ["wavenumber", "wavenumbers", "x", "freq"]:
|
| 116 |
+
if x_key in item:
|
| 117 |
+
x_val = float(item[x_key])
|
| 118 |
+
break
|
| 119 |
+
|
| 120 |
+
for y_key in ["intensity", "intensities", "y", "counts"]:
|
| 121 |
+
if y_key in item:
|
| 122 |
+
y_val = float(item[y_key])
|
| 123 |
+
break
|
| 124 |
+
|
| 125 |
+
if x_val is not None and y_val is not None:
|
| 126 |
x_vals.append(x_val)
|
| 127 |
y_vals.append(y_val)
|
| 128 |
|
| 129 |
+
if x_vals and y_vals:
|
| 130 |
+
return np.array(x_vals), np.array(y_vals)
|
| 131 |
+
|
| 132 |
+
raise ValueError(
|
| 133 |
+
"JSON format not recognized. Expected wavenumber/intensity pairs."
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
except json.JSONDecodeError as e:
|
| 137 |
+
raise ValueError(f"Invalid JSON format: {str(e)}")
|
| 138 |
+
except Exception as e:
|
| 139 |
+
raise ValueError(f"Failed to parse JSON spectrum: {str(e)}")
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
# /////////////////////////////////////////////////////
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def parse_csv_spectrum(
|
| 146 |
+
content: str, filename: str = "unknown"
|
| 147 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 148 |
+
"""
|
| 149 |
+
Parse spectrum data from CSV format.
|
| 150 |
+
|
| 151 |
+
Handles various CSV formats with headers or without.
|
| 152 |
+
"""
|
| 153 |
+
try:
|
| 154 |
+
# Use StringIO to treat string as file-like object
|
| 155 |
+
csv_file = io.StringIO(content)
|
| 156 |
+
|
| 157 |
+
# Try to detect delimiter
|
| 158 |
+
sample = content[:1024]
|
| 159 |
+
delimiter = ","
|
| 160 |
+
if sample.count(";") > sample.count(","):
|
| 161 |
+
delimiter = ";"
|
| 162 |
+
elif sample.count("\t") > sample.count(","):
|
| 163 |
+
delimiter = "\t"
|
| 164 |
+
|
| 165 |
+
# Read CSV
|
| 166 |
+
csv_reader = csv.reader(csv_file, delimiter=delimiter)
|
| 167 |
+
rows = list(csv_reader)
|
| 168 |
+
|
| 169 |
+
if not rows:
|
| 170 |
+
raise ValueError("Empty CSV file")
|
| 171 |
+
|
| 172 |
+
# Check if first row is header
|
| 173 |
+
has_header = False
|
| 174 |
+
try:
|
| 175 |
+
# If first row contains non-numeric data, it's likely a header
|
| 176 |
+
float(rows[0][0])
|
| 177 |
+
float(rows[0][1])
|
| 178 |
+
except (ValueError, IndexError):
|
| 179 |
+
has_header = True
|
| 180 |
+
|
| 181 |
+
data_rows = rows[1:] if has_header else rows
|
| 182 |
+
|
| 183 |
+
# Extract x and y values
|
| 184 |
+
x_vals = []
|
| 185 |
+
y_vals = []
|
| 186 |
+
|
| 187 |
+
for i, row in enumerate(data_rows):
|
| 188 |
+
if len(row) < 2:
|
| 189 |
+
continue
|
| 190 |
+
|
| 191 |
+
try:
|
| 192 |
+
x_val = float(row[0])
|
| 193 |
+
y_val = float(row[1])
|
| 194 |
+
x_vals.append(x_val)
|
| 195 |
+
y_vals.append(y_val)
|
| 196 |
except ValueError:
|
| 197 |
ErrorHandler.log_warning(
|
| 198 |
+
f"Could not parse CSV row {i+1}: {row}", f"Parsing {filename}"
|
| 199 |
)
|
| 200 |
continue
|
| 201 |
|
| 202 |
+
if len(x_vals) < 10:
|
| 203 |
raise ValueError(
|
| 204 |
f"Insufficient data points ({len(x_vals)}). Need at least 10 points."
|
| 205 |
)
|
| 206 |
|
| 207 |
+
return np.array(x_vals), np.array(y_vals)
|
|
|
|
| 208 |
|
| 209 |
+
except Exception as e:
|
| 210 |
+
raise ValueError(f"Failed to parse CSV spectrum: {str(e)}")
|
|
|
|
| 211 |
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
+
# /////////////////////////////////////////////////////
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def parse_spectrum_data(
|
| 217 |
+
text_content: str, filename: str = "unknown", file_format: Optional[str] = None
|
| 218 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 219 |
+
"""
|
| 220 |
+
Parse spectrum data from text content with automatic format detection.
|
| 221 |
+
Args:
|
| 222 |
+
text_content: Raw text content of the spectrum file
|
| 223 |
+
filename: Name of the file for error reporting
|
| 224 |
+
file_format: Force specific format ('txt', 'csv', 'json') or None for auto-detection
|
| 225 |
+
Returns:
|
| 226 |
+
Tuple of (x_values, y_values) as numpy arrays
|
| 227 |
+
Raises:
|
| 228 |
+
ValueError: If the data cannot be parsed
|
| 229 |
+
"""
|
| 230 |
+
try:
|
| 231 |
+
# Detect format if not specified
|
| 232 |
+
if file_format is None:
|
| 233 |
+
file_format = detect_file_format(filename, text_content)
|
| 234 |
+
|
| 235 |
+
# Parse based on detected/specified format
|
| 236 |
+
if file_format == "json":
|
| 237 |
+
x, y = parse_json_spectrum(text_content, filename)
|
| 238 |
+
elif file_format == "csv":
|
| 239 |
+
x, y = parse_csv_spectrum(text_content, filename)
|
| 240 |
+
else: # Default to TXT format
|
| 241 |
+
x, y = parse_txt_spectrum(text_content, filename)
|
| 242 |
+
|
| 243 |
+
# Common validation for all formats
|
| 244 |
+
validate_spectrum_data(x, y, filename)
|
| 245 |
|
| 246 |
return x, y
|
| 247 |
|
|
|
|
| 249 |
raise ValueError(f"Failed to parse spectrum data: {str(e)}")
|
| 250 |
|
| 251 |
|
| 252 |
+
# /////////////////////////////////////////////////////
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def parse_txt_spectrum(
|
| 256 |
+
content: str, filename: str = "unknown"
|
| 257 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 258 |
+
"""
|
| 259 |
+
Parse spectrum data from TXT format (original implementation).
|
| 260 |
+
"""
|
| 261 |
+
lines = content.strip().split("\n")
|
| 262 |
+
|
| 263 |
+
# ==Remove empty lines and comments==
|
| 264 |
+
data_lines = []
|
| 265 |
+
for line in lines:
|
| 266 |
+
line = line.strip()
|
| 267 |
+
if line and not line.startswith("#") and not line.startswith("%"):
|
| 268 |
+
data_lines.append(line)
|
| 269 |
+
|
| 270 |
+
if not data_lines:
|
| 271 |
+
raise ValueError("No data lines found in file")
|
| 272 |
+
|
| 273 |
+
# ==Try to parse==
|
| 274 |
+
x_vals, y_vals = [], []
|
| 275 |
+
|
| 276 |
+
for i, line in enumerate(data_lines):
|
| 277 |
+
try:
|
| 278 |
+
# Handle different separators
|
| 279 |
+
parts = line.replace(",", " ").split()
|
| 280 |
+
numbers = [
|
| 281 |
+
p
|
| 282 |
+
for p in parts
|
| 283 |
+
if p.replace(".", "", 1)
|
| 284 |
+
.replace("-", "", 1)
|
| 285 |
+
.replace("+", "", 1)
|
| 286 |
+
.isdigit()
|
| 287 |
+
]
|
| 288 |
+
if len(numbers) >= 2:
|
| 289 |
+
x_val = float(numbers[0])
|
| 290 |
+
y_val = float(numbers[1])
|
| 291 |
+
x_vals.append(x_val)
|
| 292 |
+
y_vals.append(y_val)
|
| 293 |
+
|
| 294 |
+
except ValueError:
|
| 295 |
+
ErrorHandler.log_warning(
|
| 296 |
+
f"Could not parse line {i+1}: {line}", f"Parsing {filename}"
|
| 297 |
+
)
|
| 298 |
+
continue
|
| 299 |
+
|
| 300 |
+
if len(x_vals) < 10: # ==Need minimum points for interpolation==
|
| 301 |
+
raise ValueError(
|
| 302 |
+
f"Insufficient data points ({len(x_vals)}). Need at least 10 points."
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
return np.array(x_vals), np.array(y_vals)
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
# /////////////////////////////////////////////////////
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
def validate_spectrum_data(x: np.ndarray, y: np.ndarray, filename: str) -> None:
|
| 312 |
+
"""
|
| 313 |
+
Validate parsed spectrum data for common issues.
|
| 314 |
+
"""
|
| 315 |
+
# Check for NaNs
|
| 316 |
+
if np.any(np.isnan(x)) or np.any(np.isnan(y)):
|
| 317 |
+
raise ValueError("Input data contains NaN values")
|
| 318 |
+
|
| 319 |
+
# Check monotonic increasing x (sort if needed)
|
| 320 |
+
if not np.all(np.diff(x) >= 0):
|
| 321 |
+
# Sort by x values if not monotonic
|
| 322 |
+
sort_idx = np.argsort(x)
|
| 323 |
+
x = x[sort_idx]
|
| 324 |
+
y = y[sort_idx]
|
| 325 |
+
ErrorHandler.log_warning(
|
| 326 |
+
"Wavenumbers were not monotonic - data has been sorted",
|
| 327 |
+
f"Parsing {filename}",
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
# Check reasonable range for spectroscopy
|
| 331 |
+
if min(x) < 0 or max(x) > 10000 or (max(x) - min(x)) < 100:
|
| 332 |
+
ErrorHandler.log_warning(
|
| 333 |
+
f"Unusual wavenumber range: {min(x):.1f} - {max(x):.1f} cm⁻¹",
|
| 334 |
+
f"Parsing {filename}",
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
# /////////////////////////////////////////////////////
|
| 339 |
+
|
| 340 |
+
|
| 341 |
def process_single_file(
|
| 342 |
filename: str,
|
| 343 |
text_content: str,
|