devjas1 commited on
Commit
7602d7b
·
1 Parent(s): e31bab9

(CHORE)[cleanup]: Remove deprecated files and documentation related to, including, validation protocols, and preprocessing scripts for FTIR data. This cleanup streamlines the repository by eliminating outdated resources and focuses on current implementations.

Browse files
AGENT_PROCESS.md DELETED
@@ -1,284 +0,0 @@
1
- # POLYMEROS Agent Development Process
2
-
3
- ## Mission Context
4
-
5
- This document chronicles the decision-making process, alternatives explored, and insights gained during the implementation of the POLYMEROS Development Protocol for the polymer-aging-ml repository. It serves as both a research methodology record and a guide for future AI-assisted scientific software development.
6
-
7
- ## Initial Analysis and Strategic Planning
8
-
9
- ### Repository Assessment (Phase 1)
10
-
11
- **Timestamp**: Initial exploration
12
- **Objective**: Understand current capabilities and identify transformation opportunities
13
-
14
- **Current State Discovered**:
15
-
16
- - Streamlit-based web application for polymer classification
17
- - Three CNN architectures: Figure2CNN, ResNet1D, ResNet18Vision
18
- - Raman spectroscopy focus with binary classification (Stable vs Weathered)
19
- - Modular architecture with separation of concerns
20
- - Existing comprehensive analysis report with detailed roadmap
21
-
22
- **Key Insights**:
23
-
24
- 1. **Foundation Strength**: Solid modular structure provides good base for expansion
25
- 2. **Scope Limitation**: Current binary classification is too narrow for research-grade applications
26
- 3. **Educational Gap**: No interactive learning components despite educational goals
27
- 4. **Collaboration Absence**: No features for team-based research or peer validation
28
-
29
- **Decision Point 1**: Transform vs. Rebuild
30
- **Choice**: Transform existing architecture rather than rebuild from scratch
31
- **Rationale**: Preserve working components while adding sophisticated capabilities
32
-
33
- ### Framework Design Philosophy
34
-
35
- **Core Assumption Challenge**:
36
- Original assumption: "Software supports users"
37
- POLYMEROS principle: "Platform enhances human decision-making and discovery"
38
-
39
- **This shift drives several key design decisions**:
40
-
41
- 1. **Explanatory AI**: Every prediction must include reasoning chains
42
- 2. **Adaptive Learning**: System improves through user interactions
43
- 3. **Hypothesis Generation**: AI suggests research directions, not just classifications
44
- 4. **Community Integration**: Built-in collaboration and validation tools
45
-
46
- ## Implementation Strategy and Decision Rationale
47
-
48
- ### Phase 1: Foundation Building
49
-
50
- #### Enhanced Data Management System
51
-
52
- **Challenge**: Simple file-based input limiting research potential
53
- **Solution**: Contextual knowledge networks with metadata preservation
54
-
55
- **Implementation Decision**: Extend existing `utils/preprocessing.py` rather than replace
56
- **Alternative Considered**: Complete rewrite of data pipeline
57
- **Rationale**: Preserve proven preprocessing while adding advanced capabilities
58
-
59
- **Key Enhancements Planned**:
60
-
61
- ```python
62
- class EnhancedDataManager:
63
- - MetadataExtractor: Automatic experimental condition tracking
64
- - ProvenanceTracker: Complete data lineage recording
65
- - KnowledgeGraph: Relationship mapping between samples
66
- - QualityAssessment: Automated data validation
67
- ```
68
-
69
- #### Transparent AI Core
70
-
71
- **Challenge**: Black-box predictions unsuitable for scientific research
72
- **Solution**: Multi-layered explainability with uncertainty quantification
73
-
74
- **Design Decision**: Wrapper approach around existing models
75
- **Alternative**: Replace existing models entirely
76
- **Rationale**: Maintain compatibility while adding sophisticated capabilities
77
-
78
- #### Educational Framework Foundation
79
-
80
- **Challenge**: No learning progression or skill assessment
81
- **Solution**: Adaptive tutorial system with competency tracking
82
-
83
- ### Phase 2: Advanced Integration
84
-
85
- #### Multi-Modal Spectroscopy Engine
86
-
87
- **Current Limitation**: Raman-only analysis
88
- **Enhancement Target**: FTIR + Raman fusion with attention mechanisms
89
-
90
- **Technical Decision**: Attention-based fusion over simple concatenation
91
- **Justification**: Attention allows model to focus on relevant spectral regions automatically
92
-
93
- #### Physics-Informed AI
94
-
95
- **Innovation**: Incorporate physical laws into neural network training
96
- **Implementation**: Physics-Informed Neural Networks (PINNs) for constraint enforcement
97
-
98
- ### Phase 3: Evolutionary Capabilities
99
-
100
- #### Self-Improving Systems
101
-
102
- **Concept**: Platform that enhances itself through usage patterns
103
- **Implementation**: Meta-learning on user interactions and feedback
104
-
105
- #### Community-Driven Development
106
-
107
- **Vision**: Research community collaboratively improving the platform
108
- **Tools**: Peer review integration, collaborative model development
109
-
110
- ## Technical Implementation Insights
111
-
112
- ### Challenge 1: Model Transparency
113
-
114
- **Problem**: Existing CNN models provide predictions without explanations
115
- **Solution**: Integrated SHAP analysis with domain-specific interpretation
116
-
117
- **Code Pattern**:
118
-
119
- ```python
120
- class TransparentPredictor:
121
- def predict_with_explanation(self, spectrum):
122
- prediction = self.model(spectrum)
123
- explanation = self.explainer.explain(spectrum)
124
- confidence = self.uncertainty_estimator(spectrum)
125
- return {
126
- 'prediction': prediction,
127
- 'explanation': explanation,
128
- 'confidence': confidence,
129
- 'reasoning_chain': self.generate_reasoning(explanation)
130
- }
131
- ```
132
-
133
- ### Challenge 2: Educational Progression
134
-
135
- **Problem**: How to assess user knowledge and adapt accordingly
136
- **Solution**: Bayesian knowledge tracing with competency mapping
137
-
138
- **Insight**: Traditional linear tutorials fail for diverse backgrounds
139
- **Innovation**: Adaptive pathways based on demonstrated understanding
140
-
141
- ### Challenge 3: Community Validation
142
-
143
- **Problem**: Ensuring scientific rigor in collaborative environment
144
- **Solution**: Weighted consensus with expertise tracking
145
-
146
- **Design Pattern**:
147
-
148
- ```python
149
- class CommunityValidator:
150
- def validate_claim(self, claim, user_submissions):
151
- expertise_weights = self.calculate_expertise(user_submissions)
152
- consensus_score = self.weighted_consensus(claim, expertise_weights)
153
- confidence = self.uncertainty_estimation(consensus_score)
154
- return ValidationResult(consensus_score, confidence, evidence_trail)
155
- ```
156
-
157
- ## Lessons Learned and Pattern Recognition
158
-
159
- ### Pattern 1: Incremental Sophistication
160
-
161
- **Observation**: Users prefer gradual capability introduction over complete overhaul
162
- **Application**: Progressive disclosure of advanced features
163
- **Implementation**: Feature flags and user-controlled complexity levels
164
-
165
- ### Pattern 2: Explanation Hierarchy
166
-
167
- **Discovery**: Different users need different levels of explanation detail
168
- **Solution**: Layered explanations from high-level to molecular detail
169
- **Code Structure**: Hierarchical explanation system with drill-down capability
170
-
171
- ### Pattern 3: Community Dynamics
172
-
173
- **Insight**: Scientific collaboration requires trust and reputation systems
174
- **Implementation**: Transparent expertise tracking with contribution history
175
- **Balance**: Encouraging participation while maintaining quality standards
176
-
177
- ## Novel AI Methodology Observations
178
-
179
- ### Emergent Behavior in Scientific AI
180
-
181
- **Observation**: AI systems trained on scientific data exhibit different patterns than general ML
182
- **Specific Findings**:
183
-
184
- 1. **Uncertainty Awareness**: Scientific AI must communicate confidence more precisely
185
- 2. **Explanation Requirements**: Scientific users demand mechanistic understanding, not just statistical correlations
186
- 3. **Collaboration Patterns**: Scientific AI benefits from ensemble human-AI reasoning
187
-
188
- ### Transfer Learning in Domain Science
189
-
190
- **Discovery**: Standard transfer learning approaches often fail in scientific domains
191
- **Reason**: Distribution shifts in scientific data are more complex than natural images
192
- **Solution**: Physics-informed transfer learning with domain adaptation
193
-
194
- ### Interactive Learning Dynamics
195
-
196
- **Finding**: Users learn AI system capabilities while AI learns user preferences
197
- **Implication**: Co-evolution of human and AI capabilities
198
- **Design Response**: Adaptive interfaces that grow with user expertise
199
-
200
- ## Validation Methodology
201
-
202
- ### Scientific Validation Approach
203
-
204
- 1. **Benchmark Testing**: Against established polymer classification datasets
205
- 2. **Expert Review**: Validation of AI-generated hypotheses by domain experts
206
- 3. **Reproducibility Testing**: Independent replication of results across institutions
207
- 4. **Long-term Studies**: Tracking research outcomes using the platform
208
-
209
- ### Educational Effectiveness Metrics
210
-
211
- 1. **Learning Velocity**: Time to demonstrate competency on standard tasks
212
- 2. **Knowledge Retention**: Long-term recall testing
213
- 3. **Transfer Capability**: Application of learned concepts to novel problems
214
- 4. **Engagement Sustainability**: Continued platform usage over time
215
-
216
- ### Community Impact Assessment
217
-
218
- 1. **Collaboration Frequency**: Inter-institutional project initiation rates
219
- 2. **Knowledge Sharing**: Community contribution quality and quantity
220
- 3. **Innovation Metrics**: Novel research directions discovered through platform use
221
- 4. **Adoption Patterns**: Spread to related scientific domains
222
-
223
- ## Future Research Directions
224
-
225
- ### AI-Assisted Scientific Discovery
226
-
227
- **Question**: Can AI systems generate novel scientific hypotheses that lead to discoveries?
228
- **Approach**: Hypothesis generation algorithms with experimental validation tracking
229
- **Success Metric**: Number of AI-suggested experiments leading to published findings
230
-
231
- ### Adaptive Scientific Interfaces
232
-
233
- **Question**: How should scientific software interfaces evolve with user expertise?
234
- **Investigation**: User interface adaptation algorithms based on competency assessment
235
- **Measurement**: Task completion efficiency and user satisfaction across expertise levels
236
-
237
- ### Community-Driven Model Development
238
-
239
- **Question**: Can research communities collaboratively improve AI models?
240
- **Framework**: Distributed model training with contribution attribution
241
- **Validation**: Model performance improvement rates and community engagement levels
242
-
243
- ## Reflection on AI Development Process
244
-
245
- ### Meta-Learning Insights
246
-
247
- **Observation**: The process of developing AI for science reveals patterns applicable to AI development generally
248
- **Key Insight**: Domain expertise integration is more critical than algorithm sophistication
249
- **Application**: Prioritize domain expert involvement over purely technical optimization
250
-
251
- ### Human-AI Collaboration Patterns
252
-
253
- **Discovery**: Most effective scientific AI systems augment rather than replace human reasoning
254
- **Implementation**: Design for human-AI symbiosis, not automation
255
- **Evidence**: Better outcomes when AI provides evidence and humans make decisions
256
-
257
- ### Sustainability Considerations
258
-
259
- **Challenge**: Ensuring long-term platform viability and community engagement
260
- **Strategy**: Design for community ownership and contribution
261
- **Approach**: Open development with stakeholder involvement from inception
262
-
263
- ## Conclusion
264
-
265
- The POLYMEROS development process demonstrates that successful scientific AI requires deep integration of domain knowledge, community needs, and technical capabilities. The key to success lies not in maximizing any single metric, but in creating adaptive systems that enhance human scientific reasoning.
266
-
267
- **Primary Insights**:
268
-
269
- 1. **Transparency Over Performance**: Scientific users prioritize understanding over accuracy
270
- 2. **Community Over Technology**: Long-term success depends on user community engagement
271
- 3. **Evolution Over Perfection**: Adaptive systems that improve through use outperform static optimal solutions
272
-
273
- **Next Steps**:
274
-
275
- 1. Implement core framework components identified in this analysis
276
- 2. Begin user testing with domain experts to validate design decisions
277
- 3. Establish community feedback loops for continuous improvement
278
- 4. Document emergent behaviors and unexpected use patterns
279
-
280
- This process record serves as both a methodology guide and a research artifact, contributing to the broader understanding of AI development for scientific applications.
281
-
282
- ---
283
-
284
- _This document will be updated throughout the development process to capture new insights, pattern recognition, and methodology refinements._
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
POLYMEROS_GUIDE.md DELETED
@@ -1,238 +0,0 @@
1
- # POLYMEROS Development Framework Guide
2
-
3
- ## Executive Summary
4
-
5
- The POLYMEROS (Polymer Research Operating System) framework represents a transformative approach to polymer science research, integrating AI-driven analysis, advanced materials data management, and interactive educational tools into a cohesive, adaptive system. This guide outlines the technical architecture, implementation strategy, and evolutionary roadmap for building a next-generation polymer research platform.
6
-
7
- ## Framework Overview
8
-
9
- ### Core Philosophy
10
-
11
- POLYMEROS operates on the principle that scientific research tools should be:
12
-
13
- - **Adaptive**: Self-improving through use and feedback
14
- - **Transparent**: Providing clear explanations for all predictions and recommendations
15
- - **Educational**: Facilitating knowledge transfer from novice to expert levels
16
- - **Collaborative**: Enabling seamless teamwork across disciplines and institutions
17
-
18
- ### Three-Pillar Architecture
19
-
20
- #### 1. AI for Scientific Analysis
21
-
22
- - **Reasoning-Focused Models**: Beyond prediction to hypothesis generation and testing
23
- - **Transparent Decision Pathways**: Every prediction includes confidence intervals and reasoning chains
24
- - **Multi-Modal Integration**: Seamless fusion of Raman, FTIR, and emerging spectroscopy techniques
25
- - **Uncertainty Quantification**: Bayesian approaches for robust confidence estimation
26
-
27
- #### 2. Materials Science Data Handling
28
-
29
- - **Contextual Knowledge Networks**: Data structures that preserve scientific context and relationships
30
- - **Intelligent Metadata Management**: Automatic extraction and tracking of experimental conditions
31
- - **Synthetic Data Generation**: Physics-informed augmentation for limited dataset scenarios
32
- - **Version Control for Science**: Complete provenance tracking for reproducibility
33
-
34
- #### 3. Educational Tools for Knowledge Building
35
-
36
- - **Interactive Exploration**: Guided discovery rather than passive information delivery
37
- - **Adaptive Learning Paths**: Personalized progression based on user expertise and interests
38
- - **Virtual Laboratory**: Hands-on experimentation in simulated environments
39
- - **Collaborative Learning**: Peer-to-peer knowledge sharing and validation
40
-
41
- ## Technical Design
42
-
43
- ### Data Architecture
44
-
45
- ```python
46
- class PolymerosDataEngine:
47
- """
48
- Adaptive data management system that treats data as structured knowledge networks
49
- rather than simple input files.
50
- """
51
- - SpectroscopyManager: Multi-modal spectral data handling with metadata
52
- - KnowledgeGraph: Relationship mapping between materials, conditions, and properties
53
- - ProvenanceTracker: Complete audit trail for scientific reproducibility
54
- - SyntheticGenerator: Physics-informed data augmentation
55
- ```
56
-
57
- ### AI Reasoning Engine
58
-
59
- ```python
60
- class PolymerosAI:
61
- """
62
- Transparent AI system that provides explanations alongside predictions.
63
- """
64
- - HypothesisGenerator: Automated scientific hypothesis creation from patterns
65
- - ExplanationEngine: SHAP-based feature importance with domain context
66
- - UncertaintyEstimator: Bayesian confidence intervals for all predictions
67
- - BiasDetector: Automated identification of potential systematic errors
68
- ```
69
-
70
- ### Educational Framework
71
-
72
- ```python
73
- class PolymerosEducation:
74
- """
75
- Interactive learning system that adapts to user expertise and learning goals.
76
- """
77
- - KnowledgeAssessment: Dynamic evaluation of user understanding
78
- - LearningPathOptimizer: Personalized curriculum generation
79
- - VirtualLab: Simulated experimentation environment
80
- - CollaborationHub: Peer learning and expert mentorship tools
81
- ```
82
-
83
- ## Implementation Timeline
84
-
85
- ### Phase 1: Foundation (Months 1-3)
86
-
87
- **Core Infrastructure Development**
88
-
89
- 1. **Enhanced Data Pipeline**
90
-
91
- - Implement contextual metadata extraction
92
- - Build knowledge graph foundations
93
- - Create provenance tracking system
94
- - Develop physics-informed synthetic data generator
95
-
96
- 2. **Transparent AI Core**
97
-
98
- - Integrate SHAP explainability
99
- - Implement Bayesian uncertainty quantification
100
- - Build hypothesis generation algorithms
101
- - Create bias detection framework
102
-
103
- 3. **Educational Foundation**
104
- - Design adaptive assessment system
105
- - Build interactive tutorial framework
106
- - Create virtual laboratory environment
107
- - Implement collaborative tools
108
-
109
- ### Phase 2: Integration (Months 4-6)
110
-
111
- **System Convergence and Enhancement**
112
-
113
- 1. **Multi-Modal Spectroscopy**
114
-
115
- - FTIR integration with attention-based fusion
116
- - Advanced preprocessing with automated parameter optimization
117
- - Cross-modal validation and consistency checking
118
-
119
- 2. **Advanced AI Capabilities**
120
-
121
- - Transformer-based architectures for spectral analysis
122
- - Physics-Informed Neural Networks (PINNs) integration
123
- - Transfer learning for cross-domain applications
124
-
125
- 3. **Research Tools**
126
- - Automated literature integration
127
- - Citation tracking and methodology validation
128
- - Collaborative research project management
129
-
130
- ### Phase 3: Evolution (Months 7-12)
131
-
132
- **Self-Improving and Community-Driven Development**
133
-
134
- 1. **Adaptive Systems**
135
-
136
- - Machine learning on user interactions for system improvement
137
- - Automated hyperparameter optimization
138
- - Dynamic model selection based on data characteristics
139
-
140
- 2. **Community Features**
141
-
142
- - Peer review integration with AI assistance
143
- - Community-driven dataset expansion
144
- - Collaborative model development tools
145
-
146
- 3. **Research Acceleration**
147
- - Automated research direction suggestions
148
- - Cross-disciplinary connection identification
149
- - Novel material property prediction
150
-
151
- ## Expected Outcomes
152
-
153
- ### Quantitative Targets (Year 1)
154
-
155
- - **Publications**: 50+ peer-reviewed papers using the platform
156
- - **Validated Discoveries**: 5+ independently confirmed novel findings
157
- - **User Engagement**: 2x faster concept mastery for beginners
158
- - **Research Efficiency**: 30% reduction in time-to-discovery
159
-
160
- ### Qualitative Indicators
161
-
162
- - **Novel Question Types**: Users asking questions not previously considered
163
- - **AI-Human Collaboration**: AI suggestions matching expert-level insights
164
- - **Cross-Disciplinary Adoption**: Platform use beyond polymer science
165
- - **Educational Impact**: Students contributing original research within months
166
-
167
- ## Success Metrics and Validation
168
-
169
- ### Scientific Validation
170
-
171
- - Benchmark against state-of-the-art polymer classification systems
172
- - Cross-validation with independent experimental datasets
173
- - Peer review of AI-generated hypotheses
174
- - Reproducibility testing across different research groups
175
-
176
- ### Educational Effectiveness
177
-
178
- - Learning outcome assessments compared to traditional methods
179
- - User satisfaction and engagement metrics
180
- - Time-to-competency measurements
181
- - Knowledge retention studies
182
-
183
- ### Platform Evolution
184
-
185
- - Community contribution rates
186
- - Feature adoption and usage patterns
187
- - System performance improvements over time
188
- - Novel use cases discovered by users
189
-
190
- ## Risk Mitigation
191
-
192
- ### Technical Risks
193
-
194
- - **Model Reliability**: Extensive validation protocols and uncertainty quantification
195
- - **Data Quality**: Automated quality assessment and provenance tracking
196
- - **System Complexity**: Modular architecture with clear interfaces
197
-
198
- ### Scientific Risks
199
-
200
- - **Reproducibility**: Complete provenance tracking and version control
201
- - **Bias Introduction**: Automated bias detection and diverse training data
202
- - **Overfitting**: Cross-validation and independent test sets
203
-
204
- ### Adoption Risks
205
-
206
- - **Learning Curve**: Progressive disclosure and adaptive tutorials
207
- - **Integration Challenges**: API-first design and standard data formats
208
- - **Community Resistance**: Transparent development and user involvement
209
-
210
- ## Future Directions
211
-
212
- ### Emerging Technologies Integration
213
-
214
- - **Quantum Computing**: Quantum-enhanced molecular simulation
215
- - **Edge Computing**: Real-time analysis on portable spectrometers
216
- - **AR/VR**: Immersive molecular visualization and manipulation
217
-
218
- ### Expanding Domains
219
-
220
- - **Materials Beyond Polymers**: Metals, ceramics, composites
221
- - **Process Optimization**: Manufacturing and recycling workflows
222
- - **Environmental Monitoring**: Pollution detection and remediation
223
-
224
- ### Advanced AI Capabilities
225
-
226
- - **Causal Inference**: Understanding cause-effect relationships in material properties
227
- - **Few-Shot Learning**: Rapid adaptation to new material classes
228
- - **Autonomous Experimentation**: AI-designed and executed experiments
229
-
230
- ## Conclusion
231
-
232
- The POLYMEROS framework represents a paradigm shift from traditional research tools to intelligent, adaptive systems that enhance human scientific capabilities. By integrating advanced AI, sophisticated data management, and interactive education, POLYMEROS aims to accelerate scientific discovery while democratizing access to cutting-edge research tools.
233
-
234
- The success of POLYMEROS will be measured not just by its technical capabilities, but by its impact on the scientific community's ability to understand, predict, and design new materials that address global challenges in sustainability, energy, and health.
235
-
236
- ---
237
-
238
- _This document serves as a living guide that will evolve with the platform's development and user feedback. Regular updates will incorporate lessons learned, technological advances, and community contributions._
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
VALIDATION_PROTOCOLS.md DELETED
@@ -1,423 +0,0 @@
1
- # POLYMEROS Validation Protocols
2
-
3
- ## Overview
4
-
5
- This document establishes comprehensive validation protocols for the POLYMEROS platform, ensuring scientific rigor, educational effectiveness, and system reliability. The validation framework operates on multiple levels: technical performance, scientific accuracy, educational impact, and community adoption.
6
-
7
- ## Scientific Validation Framework
8
-
9
- ### 1. Model Accuracy and Reliability
10
-
11
- #### Benchmark Testing Protocol
12
-
13
- **Objective**: Establish platform performance against established datasets and state-of-the-art methods
14
-
15
- **Implementation**:
16
-
17
- 1. **Standard Dataset Validation**
18
-
19
- - NIST Polymer Database cross-validation
20
- - FTIR-Plastics Database compatibility testing
21
- - Independent laboratory dataset validation
22
- - Cross-instrument validation (multiple Raman/FTIR systems)
23
-
24
- 2. **Performance Metrics**
25
-
26
- ```python
27
- validation_metrics = {
28
- "accuracy": ">95% on standard datasets",
29
- "precision": ">90% per polymer class",
30
- "recall": ">90% per polymer class",
31
- "f1_score": ">90% overall",
32
- "uncertainty_calibration": "Brier score <0.1"
33
- }
34
- ```
35
-
36
- 3. **Robustness Testing**
37
- - Noise resilience (SNR degradation testing)
38
- - Baseline drift tolerance
39
- - Instrumental variation effects
40
- - Sample preparation differences
41
-
42
- #### Statistical Validation
43
-
44
- **Protocol**: Bayesian validation with uncertainty quantification
45
-
46
- **Requirements**:
47
-
48
- - Confidence intervals for all predictions
49
- - Cross-validation with stratified sampling
50
- - Bootstrap resampling for stability assessment
51
- - Multiple independent test sets
52
-
53
- ### 2. Scientific Hypothesis Validation
54
-
55
- #### AI-Generated Hypothesis Testing
56
-
57
- **Objective**: Validate the scientific merit of AI-generated hypotheses
58
-
59
- **Protocol**:
60
-
61
- 1. **Expert Review Process**
62
-
63
- - Panel of 5+ polymer science experts
64
- - Blind evaluation of AI vs. human-generated hypotheses
65
- - Scoring criteria: novelty, testability, scientific rigor
66
-
67
- 2. **Experimental Validation**
68
-
69
- - Select top 10% of AI hypotheses for experimental testing
70
- - Collaborate with research institutions for validation
71
- - Track hypothesis-to-discovery conversion rate
72
-
73
- 3. **Literature Integration**
74
- - Automatic citation checking for hypothesis claims
75
- - Novelty verification against existing literature
76
- - Impact tracking through subsequent research
77
-
78
- #### Reproducibility Standards
79
-
80
- **Requirements**:
81
-
82
- - Complete provenance tracking for all analyses
83
- - Reproducible computational environments
84
- - Version control for all algorithms and datasets
85
- - Independent replication by external groups
86
-
87
- ### 3. Data Quality and Integrity
88
-
89
- #### Metadata Validation
90
-
91
- **Protocol**: Comprehensive metadata verification
92
-
93
- **Implementation**:
94
-
95
- ```python
96
- metadata_validation = {
97
- "completeness": "90% of critical fields populated",
98
- "accuracy": "Cross-reference with instrument logs",
99
- "consistency": "Temporal and spatial consistency checks",
100
- "traceability": "Complete chain of custody documentation"
101
- }
102
- ```
103
-
104
- #### Quality Assessment Metrics
105
-
106
- 1. **Spectral Quality Indicators**
107
-
108
- - Signal-to-noise ratio thresholds
109
- - Baseline stability measures
110
- - Peak resolution requirements
111
- - Calibration accuracy verification
112
-
113
- 2. **Automated Quality Control**
114
- - Real-time quality assessment during upload
115
- - Automated flagging of problematic spectra
116
- - Quality score integration into model training
117
- - User feedback loop for quality improvement
118
-
119
- ## Educational Effectiveness Validation
120
-
121
- ### 1. Learning Outcome Assessment
122
-
123
- #### Competency Measurement Protocol
124
-
125
- **Objective**: Validate educational effectiveness across user groups
126
-
127
- **Methodology**:
128
-
129
- 1. **Pre/Post Assessment Design**
130
-
131
- - Standardized competency tests
132
- - Practical skill evaluations
133
- - Knowledge retention testing (1, 3, 6 months)
134
- - Transfer learning assessment
135
-
136
- 2. **Control Group Studies**
137
- - Traditional learning methods comparison
138
- - Platform vs. textbook learning outcomes
139
- - Instructor-led vs. self-guided comparison
140
- - Long-term retention studies
141
-
142
- #### Learning Analytics Validation
143
-
144
- **Metrics**:
145
-
146
- ```python
147
- educational_metrics = {
148
- "learning_velocity": "Time to competency achievement",
149
- "knowledge_retention": "Long-term recall accuracy",
150
- "skill_transfer": "Novel problem-solving capability",
151
- "engagement_sustainability": "Continued platform usage rates"
152
- }
153
- ```
154
-
155
- ### 2. Adaptive Learning System Validation
156
-
157
- #### Personalization Effectiveness
158
-
159
- **Protocol**: A/B testing of adaptive vs. static learning paths
160
-
161
- **Measurements**:
162
-
163
- - Learning outcome improvements with personalization
164
- - User satisfaction and engagement metrics
165
- - Completion rates across different user types
166
- - Expert validation of learning path recommendations
167
-
168
- #### Assessment Accuracy
169
-
170
- **Validation Process**:
171
-
172
- - Expert validation of competency assessments
173
- - Cross-validation with external skill tests
174
- - Bias detection in assessment algorithms
175
- - Fairness across demographic groups
176
-
177
- ### 3. Virtual Laboratory Validation
178
-
179
- #### Simulation Accuracy
180
-
181
- **Requirements**:
182
-
183
- - Physics-based validation of simulations
184
- - Comparison with real experimental data
185
- - Expert review of simulation parameters
186
- - User feedback on realism and educational value
187
-
188
- #### Learning Effectiveness
189
-
190
- **Protocol**:
191
-
192
- - Pre/post knowledge testing
193
- - Hands-on skill transfer to real laboratories
194
- - Expert evaluation of virtual experiment designs
195
- - Long-term learning impact assessment
196
-
197
- ## System Performance Validation
198
-
199
- ### 1. Technical Performance
200
-
201
- #### Scalability Testing
202
-
203
- **Protocol**: Load testing and performance benchmarking
204
-
205
- **Requirements**:
206
-
207
- ```python
208
- performance_requirements = {
209
- "response_time": "<2 seconds for predictions",
210
- "concurrent_users": "1000+ simultaneous users",
211
- "data_throughput": "100+ spectra/minute processing",
212
- "uptime": "99.5% availability",
213
- "data_integrity": "Zero data loss tolerance"
214
- }
215
- ```
216
-
217
- #### Security Validation
218
-
219
- **Components**:
220
-
221
- - Data encryption verification
222
- - User authentication testing
223
- - Access control validation
224
- - Privacy compliance (GDPR, FERPA)
225
- - Vulnerability scanning and penetration testing
226
-
227
- ### 2. User Experience Validation
228
-
229
- #### Usability Testing
230
-
231
- **Protocol**: Multi-group usability studies
232
-
233
- **Participants**:
234
-
235
- - Novice users (students, new researchers)
236
- - Expert users (experienced scientists)
237
- - Educators and instructors
238
- - Industry professionals
239
-
240
- **Metrics**:
241
-
242
- - Task completion rates
243
- - Time to task completion
244
- - Error rates and recovery
245
- - User satisfaction scores
246
- - Feature adoption rates
247
-
248
- #### Accessibility Validation
249
-
250
- **Requirements**:
251
-
252
- - WCAG 2.1 AA compliance
253
- - Screen reader compatibility
254
- - Keyboard navigation support
255
- - Color blindness accommodation
256
- - Multi-language support validation
257
-
258
- ## Community Impact Validation
259
-
260
- ### 1. Adoption and Usage Metrics
261
-
262
- #### Platform Adoption
263
-
264
- **Tracking Metrics**:
265
-
266
- ```python
267
- adoption_metrics = {
268
- "user_growth": "Monthly active user increase",
269
- "institution_adoption": "Academic/industry organization uptake",
270
- "geographic_spread": "Global usage distribution",
271
- "retention_rate": "Long-term user engagement",
272
- "feature_utilization": "Platform capability usage patterns"
273
- }
274
- ```
275
-
276
- #### Research Impact
277
-
278
- **Validation**:
279
-
280
- - Publications citing platform use
281
- - Novel discoveries enabled by platform
282
- - Research collaboration facilitation
283
- - Cross-disciplinary adoption tracking
284
- - Industry application validation
285
-
286
- ### 2. Community Contribution Validation
287
-
288
- #### Peer Review System
289
-
290
- **Protocol**: Community-driven validation mechanisms
291
-
292
- **Implementation**:
293
-
294
- - Expert reviewer credentialing
295
- - Contribution quality scoring
296
- - Consensus mechanism validation
297
- - Bias detection in peer review
298
- - Reputation system accuracy
299
-
300
- #### Knowledge Sharing Effectiveness
301
-
302
- **Metrics**:
303
-
304
- - Community-generated content quality
305
- - Knowledge transfer success rates
306
- - Collaborative project outcomes
307
- - Cross-institutional collaboration frequency
308
- - Innovation emergence tracking
309
-
310
- ## Continuous Validation Process
311
-
312
- ### 1. Ongoing Monitoring
313
-
314
- #### Real-Time Validation
315
-
316
- **System**: Continuous monitoring and alerting
317
-
318
- **Components**:
319
-
320
- - Model performance drift detection
321
- - Data quality degradation alerts
322
- - User experience issue identification
323
- - Security threat monitoring
324
- - Educational outcome tracking
325
-
326
- #### Feedback Integration
327
-
328
- **Process**: Systematic incorporation of validation results
329
-
330
- **Implementation**:
331
-
332
- - Regular validation report generation
333
- - Stakeholder feedback collection
334
- - Improvement priority assessment
335
- - Update validation protocols
336
- - Community validation participation
337
-
338
- ### 2. Validation Reporting
339
-
340
- #### Transparency Requirements
341
-
342
- **Documentation**:
343
-
344
- - Public validation reports (quarterly)
345
- - Methodology transparency
346
- - Limitation acknowledgment
347
- - Improvement roadmap publication
348
- - Community feedback incorporation
349
-
350
- #### Stakeholder Communication
351
-
352
- **Audiences**:
353
-
354
- - Scientific community updates
355
- - Educational institution reports
356
- - Industry partner briefings
357
- - Regulatory compliance documentation
358
- - Public transparency reports
359
-
360
- ## Validation Success Criteria
361
-
362
- ### Year 1 Targets
363
-
364
- ```python
365
- year_1_targets = {
366
- "scientific_accuracy": {
367
- "benchmark_performance": ">95% accuracy on standard datasets",
368
- "hypothesis_validation": "20% of AI hypotheses experimentally confirmed",
369
- "reproducibility": "100% of analyses reproducible by independent groups"
370
- },
371
- "educational_effectiveness": {
372
- "learning_improvement": "2x faster competency achievement vs. traditional methods",
373
- "knowledge_retention": "90% retention after 6 months",
374
- "user_satisfaction": "4.5/5 average user rating"
375
- },
376
- "platform_performance": {
377
- "uptime": "99.5% system availability",
378
- "response_time": "<2 seconds average",
379
- "user_growth": "1000+ active monthly users"
380
- },
381
- "community_impact": {
382
- "publications": "50+ papers citing platform use",
383
- "discoveries": "5+ validated novel findings",
384
- "collaborations": "100+ inter-institutional collaborations"
385
- }
386
- }
387
- ```
388
-
389
- ### Long-Term Success Indicators
390
-
391
- - Platform becomes standard tool in polymer research community
392
- - Educational curricula integrate platform usage
393
- - Industry adoption for quality control and R&D
394
- - Emergence of unexpected use cases and applications
395
- - Self-sustaining community-driven development
396
-
397
- ## Risk Mitigation
398
-
399
- ### Validation Risks
400
-
401
- 1. **Confirmation Bias**: Multiple independent validation groups
402
- 2. **Overfitting to Benchmarks**: Regular benchmark updates and novel test sets
403
- 3. **Selection Bias**: Diverse user group representation
404
- 4. **Temporal Drift**: Longitudinal validation studies
405
- 5. **Cultural Bias**: International collaboration and validation
406
-
407
- ### Mitigation Strategies
408
-
409
- - Independent validation committees
410
- - Adversarial testing protocols
411
- - Diverse stakeholder involvement
412
- - Transparent methodology publication
413
- - Regular protocol updates based on emerging best practices
414
-
415
- ## Conclusion
416
-
417
- The POLYMEROS validation framework ensures that the platform meets the highest standards of scientific rigor, educational effectiveness, and system reliability. Through comprehensive, multi-layered validation protocols, we aim to build trust in the platform's capabilities while continuously improving its performance and impact.
418
-
419
- Success in validation will be measured not only by meeting technical benchmarks but by the platform's ability to accelerate scientific discovery, enhance educational outcomes, and foster collaboration within the polymer research community.
420
-
421
- ---
422
-
423
- _This validation protocol will be updated regularly based on emerging best practices, community feedback, and technological advances. All validation results will be transparently reported to maintain scientific integrity and community trust._
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
audit-access-check.txt DELETED
@@ -1 +0,0 @@
1
- chatgpt-access-check: 2025-09-02
 
 
preprocess_ftir_legacy.py DELETED
@@ -1,85 +0,0 @@
1
- import sys
2
- import os
3
- sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
4
- import numpy as np
5
- import pandas as pd
6
- from scipy.interpolate import interp1d
7
- from scipy.signal import savgol_filter
8
- from sklearn.preprocessing import minmax_scale
9
-
10
- def parse_ftir_file(filepath, num_points=500):
11
- df = pd.read_csv(filepath, skiprows=5, header=None, names=["Wavenumber", "Transmittance"])
12
- df.dropna(inplace=True)
13
- x = df["Wavenumber"].values
14
- y = df["Transmittance"].values
15
-
16
- if x[0] > x[-1]: # Ensure increasing order
17
- x = x[::-1]
18
- y = y[::-1]
19
-
20
- f_interp = interp1d(x, y, kind="linear", fill_value="extrapolate")
21
- x_uniform = np.linspace(x.min(), x.max(), num_points)
22
- y_uniform = f_interp(x_uniform)
23
-
24
- return y_uniform
25
-
26
- def label_from_filename(filename):
27
- """ Assign label based on sample prefix:
28
- - '2015a', '2015b', '2015c', '2016a', '2016b' => 1 (Aged)
29
- - All other number prefixes (1 . . 19) => 0 (Unaged)
30
- """
31
- lower_filename = filename.lower()
32
- if lower_filename.startswith(("2015a", "2015b", "2015c", "2016a", "2016b")):
33
- return 1 # Aged
34
- else:
35
- return 0 # Unaged
36
-
37
- def remove_baseline(y):
38
- x = np.arange(len(y))
39
- coeffs = np.polyfit(x, y, deg=2)
40
- baseline = np.polyval(coeffs, x)
41
- return y - baseline
42
-
43
- def normalize_spectrum(y):
44
- return minmax_scale(y)
45
-
46
- def smooth_spectrum(y, window_length=11, polyorder=2):
47
- return savgol_filter(y, window_length, polyorder)
48
-
49
- def preprocess_ftir(directory, target_len=500, baseline_correction=False, apply_smoothing=False, normalize=False):
50
- X, y = [], []
51
-
52
- for root, _, files in os.walk(directory):
53
- for file in files:
54
- if file.endswith(".csv") and "fcl" in file.lower():
55
- filepath = os.path.join(root, file)
56
- try:
57
- spectrum = parse_ftir_file(filepath, num_points=target_len)
58
-
59
- if baseline_correction:
60
- spectrum = remove_baseline(spectrum)
61
- if apply_smoothing:
62
- spectrum = smooth_spectrum(spectrum)
63
- if normalize:
64
- spectrum = normalize_spectrum(spectrum)
65
-
66
- label = label_from_filename(file)
67
- X.append(spectrum)
68
- y.append(label)
69
- except Exception as e:
70
- print(f"Failed to process {file}: {e}")
71
- with open("scripts/ftir_failures.log", "a", encoding="utf-8") as log_file:
72
- log_file.write(f"{file} - {e}\n")
73
-
74
- X = np.array(X)
75
- y = np.array(y)
76
-
77
- print(f"Processed {len(X)} FTIR samples.")
78
- return X, y
79
-
80
- if __name__ == "__main__":
81
- data_dir = os.path.join("datasets", "ftir")
82
- X, y = preprocess_ftir(data_dir)
83
- print(f"X shape: {X.shape}")
84
- print(f"y shape: {y.shape}")
85
- print(f"Label distribution: {np.bincount(y)}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
train_ftir_model.py DELETED
@@ -1,139 +0,0 @@
1
- """
2
- Module: train_ftir_model
3
- ------------------------
4
- This module trains the Figure2CNN model on preprocessed FTIR (Fourier-transform infrared spectroscopy) data.
5
- It includes data loading, preprocessing, splitting into training and testing sets, and a training loop
6
- with loss and accuracy tracking.
7
-
8
- Workflow:
9
- 1. Load preprocessed FTIR data using `preprocess_ftir`.
10
- 2. Split the data into training and testing sets (80% train, 20% test).
11
- 3. Convert the data into PyTorch tensors and wrap them in DataLoaders.
12
- 4. Instantiate the Figure2CNN model and define the loss function and optimizer.
13
- 5. Train the model over a specified number of epochs, tracking loss and accuracy.
14
- 6. Evaluate the model on the test set and report accuracy.
15
-
16
- Dependencies:
17
- - os
18
- - numpy
19
- - torch
20
- - sklearn.model_selection (for train-test split)
21
- - preprocess_ftir (for data preprocessing)
22
- - models.figure2_cnn (for the CNN model)
23
-
24
- Usage:
25
- Run this script directly to train the Figure2CNN model on the FTIR dataset.
26
- The script outputs training loss and accuracy for each epoch, as well as test set accuracy.
27
- """
28
- import sys
29
- import os
30
- sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
31
- import numpy as np
32
- import torch
33
- from torch import optim
34
- from torch import nn
35
- from sklearn.model_selection import train_test_split
36
- from torch.utils.data import TensorDataset, DataLoader
37
- from preprocess_ftir import preprocess_ftir
38
- from models.figure2_cnn import Figure2CNN
39
-
40
- # Load preprocessed Raman data
41
- data_dir = os.path.join("datasets", "ftir")
42
- X, y = preprocess_ftir(data_dir)
43
-
44
- # Print shape for confirmation
45
- print(f"Total Samples: {X.shape[0]}")
46
- print(f"Feature Shape per Sample: {X.shape[1]}")
47
-
48
- # Split into 80% train, 20% test
49
- X_train, X_test, y_train, y_test = train_test_split(
50
- X,
51
- y,
52
- test_size=0.2,
53
- random_state=42, # for reproductability
54
- stratify=y, # balances label distribution (e.g.,0s & 1s)
55
- )
56
-
57
- # Confirm Results
58
- print(f"Training Samples: {X_train.shape[0]}")
59
- print(f"Test Samples: {X_test.shape[0]}")
60
-
61
- # Convert to PyTorch tensors
62
- X_train_tensor = torch.tensor(X_train, dtype=torch.float32).unsqueeze(
63
- 1
64
- ) # shape (N, 1, 500)
65
- y_train_tensor = torch.tensor(y_train, dtype=torch.long)
66
- X_test_tensor = torch.tensor(X_test, dtype=torch.float32).unsqueeze(1)
67
- y_test_tensor = torch.tensor(y_test, dtype=torch.long)
68
-
69
- # Wrap in TensorDataset
70
- train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
71
- test_dataset = TensorDataset(X_test_tensor, y_test_tensor)
72
-
73
- # Create DataLoaders
74
- train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
75
- test_loader = DataLoader(test_dataset, batch_size=16)
76
-
77
- # Instantiate model
78
- model = Figure2CNN(input_length=500)
79
-
80
- # Set to evaluation or training mode as needed
81
- model.train()
82
-
83
- # Define loss function
84
- criterion = nn.CrossEntropyLoss()
85
-
86
- # Optimizer
87
- optimizer = optim.Adam(model.parameters(), lr=0.001)
88
-
89
- # Training loop
90
- num_epochs = 10
91
-
92
- for epoch in range(num_epochs):
93
- model.train()
94
- running_loss = 0.0
95
- correct = 0
96
- total = 0
97
-
98
- for inputs, labels in train_loader:
99
- # Forward pass
100
- outputs = model(inputs)
101
- loss = criterion(outputs, labels)
102
-
103
- # Backpropagation + optimization
104
- optimizer.zero_grad()
105
- loss.backward()
106
- optimizer.step()
107
-
108
- # Track metrics
109
- running_loss += loss.item()
110
- _, predicted = torch.max(outputs, 1)
111
- total += labels.size(0)
112
- correct += (predicted == labels).sum().item()
113
-
114
- # Epoch summary
115
- epoch_loss = running_loss / len(train_loader)
116
- epoch_acc = correct / total * 100
117
-
118
- print(
119
- f"Epoch [{epoch+1}/{num_epochs}] - Loss: {epoch_loss:.4f} - Accuracy: {epoch_acc:.2f}%"
120
- )
121
-
122
-
123
- # -------------------------------
124
- # Step 6.1.5 — Evaluation on Test Set
125
- # -------------------------------
126
-
127
- model.eval()
128
- correct = 0
129
- total = 0
130
-
131
- with torch.no_grad():
132
- for inputs, labels in test_loader:
133
- outputs = model(inputs)
134
- _, predicted = torch.max(outputs, 1)
135
- total += labels.size(0)
136
- correct += (predicted == labels).sum().item()
137
-
138
- test_acc = correct / total * 100
139
- print(f"\nTest Set Accuracy: {test_acc:.2f}%")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
train_ftir_model_cv.py DELETED
@@ -1,201 +0,0 @@
1
- """
2
- This script performs 10-fold cross-validation on FTIR data using a CNN model.
3
- It includes optional preprocessing steps such as baseline correction, smoothing, and normalization.
4
- """
5
-
6
- import os
7
- import sys
8
- sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
9
- import json
10
- import argparse
11
- from datetime import datetime
12
- import warnings
13
-
14
- import numpy as np
15
- import torch
16
- from torch.utils.data import TensorDataset, DataLoader
17
- from sklearn.model_selection import StratifiedKFold
18
- from sklearn.metrics import confusion_matrix
19
-
20
- from models.figure2_cnn import Figure2CNN
21
- from depracated_scripts.preprocess_ftir import preprocess_ftir
22
-
23
- # Argument parser
24
- parser = argparse.ArgumentParser(
25
- description="Run 10-fold CV on FTIR data with optional preprocessing.")
26
- parser.add_argument(
27
- "--target-len", type=int, default=500,
28
- help="Number of points to resample spectra to"
29
- )
30
- parser.add_argument(
31
- "--baseline", action="store_true",
32
- help="Apply baseline correction"
33
- )
34
- parser.add_argument(
35
- "--smooth", action="store_true",
36
- help="Apply Savitzky-Golay smoothing"
37
- )
38
- parser.add_argument(
39
- "--normalize", action="store_true",
40
- help="Apply min-max normalization"
41
- )
42
- parser.add_argument(
43
- "--batch-size", type=int, default=16,
44
- help="Batch size for training"
45
- )
46
- parser.add_argument(
47
- "--epochs", type=int, default=10,
48
- help="Number of training epochs."
49
- )
50
- parser.add_argument(
51
- "--learning-rate", type=float,
52
- default=1e-3, help="Learning rate for optimizer."
53
- )
54
-
55
- args = parser.parse_args()
56
-
57
-
58
- # Print configuration
59
- print("Preprocessing Configuration:")
60
- print(f" Reseample to : {args.target_len} points")
61
- print(f" Baseline Correct: {'✅' if args.baseline else '❌'}")
62
- print(f" Smoothing : {'✅' if args.smooth else '❌'}")
63
- print(f" Normalization : {'✅' if args.normalize else '❌'}")
64
-
65
- # Constants
66
- DATASET_PATH = 'datasets/ftir'
67
- BATCH_SIZE = args.batch_size
68
- EPOCHS = args.epochs
69
- NUM_FOLDS = 10
70
- LEARNING_RATE = args.learning_rate
71
- DEVICE = torch.device("cuda" if torch.cuda.is_available() else 'cpu')
72
-
73
- # Load and preprocess dataset
74
- print("🔄 Loading and preprocessing FTIR data ...")
75
- X, y = preprocess_ftir(
76
- DATASET_PATH,
77
- target_len=args.target_len,
78
- baseline_correction=args.baseline,
79
- apply_smoothing=args.smooth,
80
- normalize=args.normalize
81
- )
82
- X = np.array(X, dtype=np.float32)
83
- y = np.array(y, dtype=np.int64)
84
- print(f"✅ Data Loaded: {X.shape[0]} samples, {X.shape[1]} features each.")
85
- input_channels = 4
86
-
87
- # Cross-validation setup
88
- skf = StratifiedKFold(n_splits=NUM_FOLDS, shuffle=True, random_state=42)
89
- fold_accuracies = []
90
- all_conf_matrices = []
91
-
92
- # Cross-validation loop
93
- with warnings.catch_warnings():
94
- warnings.simplefilter("ignore", category=UserWarning)
95
- for fold, (train_idx, val_idx) in enumerate(skf.split(X, y), 1):
96
- print(f"\n🔁 Fold {fold}/{NUM_FOLDS} Training...")
97
-
98
- X_train, X_val = X[train_idx], X[val_idx]
99
- y_train, y_val = y[train_idx], y[val_idx]
100
-
101
- train_dataset = TensorDataset(torch.tensor(X_train), torch.tensor(y_train))
102
- val_dataset = TensorDataset(torch.tensor(X_val), torch.tensor(y_val))
103
- train_loader = DataLoader(
104
- train_dataset, batch_size=BATCH_SIZE, shuffle=True)
105
- val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
106
-
107
- model = Figure2CNN(input_length=args.target_len, input_channels=input_channels).to(DEVICE)
108
- model.describe_model()
109
- optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
110
- criterion = torch.nn.CrossEntropyLoss()
111
-
112
-
113
- # Training
114
- for epoch in range(EPOCHS):
115
- model.train()
116
- RUNNING_LOSS = 0.0
117
- for inputs, labels in train_loader:
118
- inputs = inputs.view(inputs.size(0), input_channels, args.target_len).to(DEVICE)
119
- labels = labels.to(DEVICE)
120
-
121
- optimizer.zero_grad()
122
- outputs = model(inputs)
123
- loss = criterion(outputs, labels)
124
- loss.backward()
125
- optimizer.step()
126
- RUNNING_LOSS += loss.item()
127
-
128
- # After fold loop (outside the epoch loop), print 1 line:
129
- print(f"✅ Fold {fold} completed. Final training loss: {RUNNING_LOSS:.4f}")
130
-
131
- torch.save(model.state_dict(), "outputs/ftir_model.pth")
132
-
133
- # Evaluation
134
- model.eval()
135
- all_true = []
136
- all_pred = []
137
- with torch.no_grad():
138
- for inputs, labels in val_loader:
139
- inputs = inputs.view(inputs.size(0), input_channels, args.target_len).to(DEVICE)
140
- labels = labels.to(DEVICE)
141
- outputs = model(inputs)
142
- _, predicted = torch.max(outputs, 1)
143
- all_true.extend(labels.cpu().numpy())
144
- all_pred.extend(predicted.cpu().numpy())
145
-
146
- accuracy = 100 * np.mean(np.array(all_true) == np.array(all_pred))
147
- fold_accuracies.append(accuracy)
148
- conf_mat = confusion_matrix(all_true, all_pred)
149
- all_conf_matrices.append(conf_mat)
150
-
151
- print(f"✅ Fold {fold} Accuracy: {accuracy:.2f}%")
152
- print(f"Confusion Matrix Fold {fold}):\n{conf_mat}")
153
-
154
- # Final summary
155
- print("\n📊 Final Cross-Validation Results:")
156
- for i, acc in enumerate(fold_accuracies, 1):
157
- print(f"Fold {i}: {acc:.2f}%")
158
-
159
- mean_acc = np.mean(fold_accuracies)
160
- std_acc = np.std(fold_accuracies)
161
- print(f"\n✅ Mean Accuracy: {mean_acc:.2f}% ± {std_acc:.2f}%")
162
- print("✅ Model saved to outputs/ftir_model.pth")
163
-
164
-
165
- # Diagnostics log saving
166
- def save_diagnostics_log(fold_accs, conf_matrices, config_args, output_path="logs/ftir_cv_diagnostics.json"):
167
- fold_metrics = [
168
- {
169
- "fold": i + 1,
170
- "accuracy": acc,
171
- "confusion_matrix": cm.tolist()
172
- }
173
- for i, (acc, cm) in enumerate(zip(fold_accs, conf_matrices))
174
- ]
175
- log = {
176
- "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
177
- "preprocessing": {
178
- "target_len": config_args.target_len,
179
- "baseline_correction": config_args.baseline,
180
- "smoothin": config_args.smooth,
181
- "normalization": config_args.normalize,
182
- },
183
- "fold_metrics": fold_metrics,
184
- "overall": {
185
- "mean_accuracy": float(np.mean(fold_accs)),
186
- "std_accuracy": float(np.std(fold_accs)),
187
- "num_folds": len(fold_accs),
188
- "batch_size": BATCH_SIZE,
189
- "epochs": EPOCHS,
190
- "learning_rate": LEARNING_RATE,
191
- "device": str(DEVICE)
192
- }
193
- }
194
- os.makedirs("logs", exist_ok=True)
195
- with open(output_path, "w", encoding="utf-8") as f:
196
- json.dump(log, f, indent=2)
197
- print(f"🧠 Diagnostics written to {output_path}")
198
-
199
-
200
- # Run diagnostics save
201
- save_diagnostics_log(fold_accuracies, all_conf_matrices, args)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
train_model.py DELETED
@@ -1,135 +0,0 @@
1
- """
2
- Module: train_model
3
- -------------------
4
- This module trains the Figure2CNN model on preprocessed Raman spectroscopy data.
5
- It includes data loading, preprocessing, splitting into training and testing sets,
6
- and a training loop with loss and accuracy tracking.
7
-
8
- Workflow:
9
- 1. Load preprocessed Raman data using `preprocess_dataset`.
10
- 2. Split the data into training and testing sets (80% train, 20% test).
11
- 3. Convert the data into PyTorch tensors and wrap them in DataLoaders.
12
- 4. Instantiate the Figure2CNN model and define the loss function and optimizer.
13
- 5. Train the model over a specified number of epochs, tracking loss and accuracy.
14
-
15
- Dependencies:
16
- - os
17
- - numpy
18
- - torch
19
- - sklearn.model_selection (for train-test split)
20
- - preprocess_dataset (for data preprocessing)
21
- - models.figure2_cnn (for the CNN model)
22
-
23
- Usage:
24
- Run this script directly to train the Figure2CNN model on the Raman dataset.
25
- The script outputs training loss and accuracy for each epoch.
26
- """
27
- import sys
28
- import os
29
- sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
30
- import torch
31
- from torch.utils.data import TensorDataset, DataLoader
32
- from sklearn.model_selection import train_test_split
33
- import torch.nn as nn
34
- import torch.optim as optim
35
- from preprocess_dataset import preprocess_dataset
36
- from models.figure2_cnn import Figure2CNN
37
-
38
-
39
- # Load preprocessed Raman data
40
- data_dir = os.path.join("datasets", "rdwp")
41
- X, y = preprocess_dataset(data_dir)
42
-
43
- # Print shape for confirmation
44
- print(f"Total Samples: {X.shape[0]}")
45
- print(f"Feature Shape per Sample: {X.shape[1]}")
46
-
47
- # Split into 80% train, 20% test
48
- X_train, X_test, y_train, y_test = train_test_split(
49
- X, y,
50
- test_size=0.2,
51
- random_state=42, # for reproductability
52
- stratify=y # balances label distribution (e.g.,0s & 1s)
53
- )
54
-
55
- # Confirm Results
56
- print(f"Training Samples: {X_train.shape[0]}")
57
- print(f"Test Samples: {X_test.shape[0]}")
58
-
59
- # Convert to PyTorch tensors
60
- X_train_tensor = torch.tensor(
61
- X_train, dtype=torch.float32).unsqueeze(1) # shape (N, 1, 500)
62
- y_train_tensor = torch.tensor(y_train, dtype=torch.long)
63
- X_test_tensor = torch.tensor(X_test, dtype=torch.float32).unsqueeze(1)
64
- y_test_tensor = torch.tensor(y_test, dtype=torch.long)
65
-
66
- # Wrap in TensorDataset
67
- train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
68
- test_dataset = TensorDataset(X_test_tensor, y_test_tensor)
69
-
70
- # Create DataLoaders
71
- train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
72
- test_loader = DataLoader(test_dataset, batch_size=16)
73
-
74
- # Instantiate model
75
- model = Figure2CNN(input_length=500)
76
-
77
- # Set to evaluation or training mode as needed
78
- model.train()
79
-
80
- # Define loss function
81
- criterion = nn.CrossEntropyLoss()
82
-
83
- # Optimizer
84
- optimizer = optim.Adam(model.parameters(), lr=0.001)
85
-
86
- # Training loop
87
- num_epochs = 10
88
-
89
- for epoch in range(num_epochs):
90
- model.train()
91
- running_loss = 0.0
92
- correct = 0
93
- total = 0
94
-
95
- for inputs, labels in train_loader:
96
- # Forward pass
97
- outputs = model(inputs)
98
- loss = criterion(outputs, labels)
99
-
100
- # Backpropagation + optimization
101
- optimizer.zero_grad()
102
- loss.backward()
103
- optimizer.step()
104
-
105
- # Track metrics
106
- running_loss += loss.item()
107
- _, predicted = torch.max(outputs, 1)
108
- total += labels.size(0)
109
- correct += (predicted == labels).sum().item()
110
-
111
- # Epoch summary
112
- epoch_loss = running_loss / len(train_loader)
113
- epoch_acc = correct / total * 100
114
-
115
- print(
116
- f"Epoch [{epoch+1}/{num_epochs}] - Loss: {epoch_loss:.4f} - Accuracy: {epoch_acc:.2f}%")
117
-
118
-
119
- # -------------------------------
120
- # Step 6.1.5 — Evaluation on Test Set
121
- # -------------------------------
122
-
123
- model.eval()
124
- correct = 0
125
- total = 0
126
-
127
- with torch.no_grad():
128
- for inputs, labels in test_loader:
129
- outputs = model(inputs)
130
- _, predicted = torch.max(outputs, 1)
131
- total += labels.size(0)
132
- correct += (predicted == labels).sum().item()
133
-
134
- test_acc = correct / total * 100
135
- print(f"\nTest Set Accuracy: {test_acc:.2f}%")