Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from diffusers import AutoPipelineForInpainting | |
| from loguru import logger | |
| from PIL import Image, ImageChops | |
| SUPPORTED_MODELS = [ | |
| "stabilityai/sdxl-turbo", | |
| "stabilityai/stable-diffusion-3-medium-diffusers", | |
| "stabilityai/stable-diffusion-xl-base-1.0", | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", | |
| "timbrooks/instruct-pix2pix", | |
| ] | |
| DEFAULT_MODEL = "stabilityai/stable-diffusion-xl-base-1.0" | |
| model = os.environ.get("MODEL_ID", DEFAULT_MODEL) | |
| gpu_duration = int(os.environ.get("GPU_DURATION", 60)) | |
| def load_pipeline(model): | |
| return AutoPipelineForInpainting.from_pretrained( | |
| model, torch_dtype=torch.float16, use_safetensors=True, variant="fp16" | |
| ) | |
| logger.debug(f"Loading pipeline: {dict(model=model)}") | |
| pipe = load_pipeline(model).to("cuda" if torch.cuda.is_available() else "mps") | |
| def infer( | |
| prompt: str, | |
| image_editor: dict, | |
| negative_prompt: str, | |
| strength: float, | |
| num_inference_steps: int, | |
| guidance_scale: float, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| logger.info( | |
| f"Starting image generation: {dict(model=model, prompt=prompt, image_editor=image_editor)}" | |
| ) | |
| init_image: Image.Image = image_editor["background"].convert("RGB") | |
| # Downscale the image | |
| init_image.thumbnail((1024, 1024)) | |
| mask_layer = image_editor["layers"][0] | |
| mask_image = Image.new("RGBA", mask_layer.size, "white") | |
| mask_image = Image.alpha_composite(mask_image, mask_layer).convert("RGB") | |
| mask_image = ImageChops.invert(mask_image) | |
| mask_image.thumbnail((1024, 1024)) | |
| additional_args = { | |
| k: v | |
| for k, v in dict( | |
| strength=strength, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| ).items() | |
| if v | |
| } | |
| logger.debug(f"Generating image: {dict(prompt=prompt, **additional_args)}") | |
| images = pipe( | |
| prompt=prompt, | |
| image=init_image, | |
| mask_image=mask_image, | |
| negative_prompt=negative_prompt, | |
| **additional_args, | |
| ).images | |
| return images[0] | |
| css = """ | |
| @media (max-width: 1280px) { | |
| #images-container { | |
| flex-direction: column; | |
| } | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(): | |
| gr.Markdown("# Inpainting") | |
| gr.Markdown(f"## Model: `{model}`") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| with gr.Row(elem_id="images-container"): | |
| image_editor = gr.ImageMask(label="Initial image", type="pil") | |
| result = gr.Image(label="Result") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| ) | |
| with gr.Row(): | |
| strength = gr.Slider( | |
| label="Strength", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.01, | |
| value=0.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=0, | |
| maximum=100, | |
| step=1, | |
| value=0, | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=100.0, | |
| step=0.1, | |
| value=0.0, | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| image_editor, | |
| negative_prompt, | |
| strength, | |
| num_inference_steps, | |
| guidance_scale, | |
| ], | |
| outputs=[result], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |