Spaces:
Running
Running
| # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). | |
| # Source for "Build a Large Language Model From Scratch" | |
| # - https://www.manning.com/books/build-a-large-language-model-from-scratch | |
| # Code: https://github.com/rasbt/LLMs-from-scratch | |
| # | |
| # This file collects all the relevant code that we covered thus far | |
| # throughout Chapters 2-6. | |
| # This file can be run as a standalone script. | |
| import matplotlib.pyplot as plt | |
| from matplotlib.ticker import MaxNLocator | |
| import numpy as np | |
| import tiktoken | |
| import torch | |
| import torch.nn as nn | |
| from torch.utils.data import Dataset, DataLoader | |
| ##################################### | |
| # Chapter 2 | |
| ##################################### | |
| class GPTDatasetV1(Dataset): | |
| def __init__(self, txt, tokenizer, max_length, stride): | |
| self.tokenizer = tokenizer | |
| self.input_ids = [] | |
| self.target_ids = [] | |
| # Tokenize the entire text | |
| token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"}) | |
| # Use a sliding window to chunk the book into overlapping sequences of max_length | |
| for i in range(0, len(token_ids) - max_length, stride): | |
| input_chunk = token_ids[i:i + max_length] | |
| target_chunk = token_ids[i + 1: i + max_length + 1] | |
| self.input_ids.append(torch.tensor(input_chunk)) | |
| self.target_ids.append(torch.tensor(target_chunk)) | |
| def __len__(self): | |
| return len(self.input_ids) | |
| def __getitem__(self, idx): | |
| return self.input_ids[idx], self.target_ids[idx] | |
| def create_dataloader_v1(txt, batch_size=4, max_length=256, | |
| stride=128, shuffle=True, drop_last=True, num_workers=0): | |
| # Initialize the tokenizer | |
| tokenizer = tiktoken.get_encoding("gpt2") | |
| # Create dataset | |
| dataset = GPTDatasetV1(txt, tokenizer, max_length, stride) | |
| # Create dataloader | |
| dataloader = DataLoader( | |
| dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers) | |
| return dataloader | |
| ##################################### | |
| # Chapter 3 | |
| ##################################### | |
| class MultiHeadAttention(nn.Module): | |
| def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): | |
| super().__init__() | |
| assert d_out % num_heads == 0, "d_out must be divisible by n_heads" | |
| self.d_out = d_out | |
| self.num_heads = num_heads | |
| self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim | |
| self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) | |
| self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) | |
| self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) | |
| self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs | |
| self.dropout = nn.Dropout(dropout) | |
| self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1)) | |
| def forward(self, x): | |
| b, num_tokens, d_in = x.shape | |
| keys = self.W_key(x) # Shape: (b, num_tokens, d_out) | |
| queries = self.W_query(x) | |
| values = self.W_value(x) | |
| # We implicitly split the matrix by adding a `num_heads` dimension | |
| # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) | |
| keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) | |
| values = values.view(b, num_tokens, self.num_heads, self.head_dim) | |
| queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) | |
| # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) | |
| keys = keys.transpose(1, 2) | |
| queries = queries.transpose(1, 2) | |
| values = values.transpose(1, 2) | |
| # Compute scaled dot-product attention (aka self-attention) with a causal mask | |
| attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head | |
| # Original mask truncated to the number of tokens and converted to boolean | |
| mask_bool = self.mask.bool()[:num_tokens, :num_tokens] | |
| # Use the mask to fill attention scores | |
| attn_scores.masked_fill_(mask_bool, -torch.inf) | |
| attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) | |
| attn_weights = self.dropout(attn_weights) | |
| # Shape: (b, num_tokens, num_heads, head_dim) | |
| context_vec = (attn_weights @ values).transpose(1, 2) | |
| # Combine heads, where self.d_out = self.num_heads * self.head_dim | |
| context_vec = context_vec.reshape(b, num_tokens, self.d_out) | |
| context_vec = self.out_proj(context_vec) # optional projection | |
| return context_vec | |
| ##################################### | |
| # Chapter 4 | |
| ##################################### | |
| class LayerNorm(nn.Module): | |
| def __init__(self, emb_dim): | |
| super().__init__() | |
| self.eps = 1e-5 | |
| self.scale = nn.Parameter(torch.ones(emb_dim)) | |
| self.shift = nn.Parameter(torch.zeros(emb_dim)) | |
| def forward(self, x): | |
| mean = x.mean(dim=-1, keepdim=True) | |
| var = x.var(dim=-1, keepdim=True, unbiased=False) | |
| norm_x = (x - mean) / torch.sqrt(var + self.eps) | |
| return self.scale * norm_x + self.shift | |
| class GELU(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, x): | |
| return 0.5 * x * (1 + torch.tanh( | |
| torch.sqrt(torch.tensor(2.0 / torch.pi)) * | |
| (x + 0.044715 * torch.pow(x, 3)) | |
| )) | |
| class FeedForward(nn.Module): | |
| def __init__(self, cfg): | |
| super().__init__() | |
| self.layers = nn.Sequential( | |
| nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), | |
| GELU(), | |
| nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), | |
| ) | |
| def forward(self, x): | |
| return self.layers(x) | |
| class TransformerBlock(nn.Module): | |
| def __init__(self, cfg): | |
| super().__init__() | |
| self.att = MultiHeadAttention( | |
| d_in=cfg["emb_dim"], | |
| d_out=cfg["emb_dim"], | |
| context_length=cfg["context_length"], | |
| num_heads=cfg["n_heads"], | |
| dropout=cfg["drop_rate"], | |
| qkv_bias=cfg["qkv_bias"]) | |
| self.ff = FeedForward(cfg) | |
| self.norm1 = LayerNorm(cfg["emb_dim"]) | |
| self.norm2 = LayerNorm(cfg["emb_dim"]) | |
| self.drop_resid = nn.Dropout(cfg["drop_rate"]) | |
| def forward(self, x): | |
| # Shortcut connection for attention block | |
| shortcut = x | |
| x = self.norm1(x) | |
| x = self.att(x) # Shape [batch_size, num_tokens, emb_size] | |
| x = self.drop_resid(x) | |
| x = x + shortcut # Add the original input back | |
| # Shortcut connection for feed-forward block | |
| shortcut = x | |
| x = self.norm2(x) | |
| x = self.ff(x) | |
| x = self.drop_resid(x) | |
| x = x + shortcut # Add the original input back | |
| return x | |
| class GPTModel(nn.Module): | |
| def __init__(self, cfg): | |
| super().__init__() | |
| self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) | |
| self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) | |
| self.drop_emb = nn.Dropout(cfg["drop_rate"]) | |
| self.trf_blocks = nn.Sequential( | |
| *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) | |
| self.final_norm = LayerNorm(cfg["emb_dim"]) | |
| self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False) | |
| def forward(self, in_idx): | |
| batch_size, seq_len = in_idx.shape | |
| tok_embeds = self.tok_emb(in_idx) | |
| pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) | |
| x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size] | |
| x = self.drop_emb(x) | |
| x = self.trf_blocks(x) | |
| x = self.final_norm(x) | |
| logits = self.out_head(x) | |
| return logits | |
| def generate_text_simple(model, idx, max_new_tokens, context_size): | |
| # idx is (B, T) array of indices in the current context | |
| for _ in range(max_new_tokens): | |
| # Crop current context if it exceeds the supported context size | |
| # E.g., if LLM supports only 5 tokens, and the context size is 10 | |
| # then only the last 5 tokens are used as context | |
| idx_cond = idx[:, -context_size:] | |
| # Get the predictions | |
| with torch.no_grad(): | |
| logits = model(idx_cond) | |
| # Focus only on the last time step | |
| # (batch, n_token, vocab_size) becomes (batch, vocab_size) | |
| logits = logits[:, -1, :] | |
| # Get the idx of the vocab entry with the highest logits value | |
| idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1) | |
| # Append sampled index to the running sequence | |
| idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1) | |
| return idx | |
| ##################################### | |
| # Chapter 5 | |
| ##################################### | |
| def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None): | |
| # For-loop is the same as before: Get logits, and only focus on last time step | |
| for _ in range(max_new_tokens): | |
| idx_cond = idx[:, -context_size:] | |
| with torch.no_grad(): | |
| logits = model(idx_cond) | |
| logits = logits[:, -1, :] | |
| # New: Filter logits with top_k sampling | |
| if top_k is not None: | |
| # Keep only top_k values | |
| top_logits, _ = torch.topk(logits, top_k) | |
| min_val = top_logits[:, -1] | |
| logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits) | |
| # New: Apply temperature scaling | |
| if temperature > 0.0: | |
| logits = logits / temperature | |
| # Apply softmax to get probabilities | |
| probs = torch.softmax(logits, dim=-1) # (batch_size, context_len) | |
| # Sample from the distribution | |
| idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1) | |
| # Otherwise same as before: get idx of the vocab entry with the highest logits value | |
| else: | |
| idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1) | |
| if idx_next == eos_id: # Stop generating early if end-of-sequence token is encountered and eos_id is specified | |
| break | |
| # Same as before: append sampled index to the running sequence | |
| idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1) | |
| return idx | |
| def train_model_simple(model, train_loader, val_loader, optimizer, device, num_epochs, | |
| eval_freq, eval_iter, start_context, tokenizer): | |
| # Initialize lists to track losses and tokens seen | |
| train_losses, val_losses, track_tokens_seen = [], [], [] | |
| tokens_seen, global_step = 0, -1 | |
| # Main training loop | |
| for epoch in range(num_epochs): | |
| model.train() # Set model to training mode | |
| for input_batch, target_batch in train_loader: | |
| optimizer.zero_grad() # Reset loss gradients from previous batch iteration | |
| loss = calc_loss_batch(input_batch, target_batch, model, device) | |
| loss.backward() # Calculate loss gradients | |
| optimizer.step() # Update model weights using loss gradients | |
| tokens_seen += input_batch.numel() | |
| global_step += 1 | |
| # Optional evaluation step | |
| if global_step % eval_freq == 0: | |
| train_loss, val_loss = evaluate_model( | |
| model, train_loader, val_loader, device, eval_iter) | |
| train_losses.append(train_loss) | |
| val_losses.append(val_loss) | |
| track_tokens_seen.append(tokens_seen) | |
| print(f"Ep {epoch+1} (Step {global_step:06d}): " | |
| f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}") | |
| # Print a sample text after each epoch | |
| generate_and_print_sample( | |
| model, tokenizer, device, start_context | |
| ) | |
| return train_losses, val_losses, track_tokens_seen | |
| def evaluate_model(model, train_loader, val_loader, device, eval_iter): | |
| model.eval() | |
| with torch.no_grad(): | |
| train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter) | |
| val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter) | |
| model.train() | |
| return train_loss, val_loss | |
| def generate_and_print_sample(model, tokenizer, device, start_context): | |
| model.eval() | |
| context_size = model.pos_emb.weight.shape[0] | |
| encoded = text_to_token_ids(start_context, tokenizer).to(device) | |
| with torch.no_grad(): | |
| token_ids = generate_text_simple( | |
| model=model, idx=encoded, | |
| max_new_tokens=50, context_size=context_size | |
| ) | |
| decoded_text = token_ids_to_text(token_ids, tokenizer) | |
| print(decoded_text.replace("\n", " ")) # Compact print format | |
| model.train() | |
| def assign(left, right): | |
| if left.shape != right.shape: | |
| raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}") | |
| return torch.nn.Parameter(torch.tensor(right)) | |
| def load_weights_into_gpt(gpt, params): | |
| gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe']) | |
| gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte']) | |
| for b in range(len(params["blocks"])): | |
| q_w, k_w, v_w = np.split( | |
| (params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1) | |
| gpt.trf_blocks[b].att.W_query.weight = assign( | |
| gpt.trf_blocks[b].att.W_query.weight, q_w.T) | |
| gpt.trf_blocks[b].att.W_key.weight = assign( | |
| gpt.trf_blocks[b].att.W_key.weight, k_w.T) | |
| gpt.trf_blocks[b].att.W_value.weight = assign( | |
| gpt.trf_blocks[b].att.W_value.weight, v_w.T) | |
| q_b, k_b, v_b = np.split( | |
| (params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1) | |
| gpt.trf_blocks[b].att.W_query.bias = assign( | |
| gpt.trf_blocks[b].att.W_query.bias, q_b) | |
| gpt.trf_blocks[b].att.W_key.bias = assign( | |
| gpt.trf_blocks[b].att.W_key.bias, k_b) | |
| gpt.trf_blocks[b].att.W_value.bias = assign( | |
| gpt.trf_blocks[b].att.W_value.bias, v_b) | |
| gpt.trf_blocks[b].att.out_proj.weight = assign( | |
| gpt.trf_blocks[b].att.out_proj.weight, | |
| params["blocks"][b]["attn"]["c_proj"]["w"].T) | |
| gpt.trf_blocks[b].att.out_proj.bias = assign( | |
| gpt.trf_blocks[b].att.out_proj.bias, | |
| params["blocks"][b]["attn"]["c_proj"]["b"]) | |
| gpt.trf_blocks[b].ff.layers[0].weight = assign( | |
| gpt.trf_blocks[b].ff.layers[0].weight, | |
| params["blocks"][b]["mlp"]["c_fc"]["w"].T) | |
| gpt.trf_blocks[b].ff.layers[0].bias = assign( | |
| gpt.trf_blocks[b].ff.layers[0].bias, | |
| params["blocks"][b]["mlp"]["c_fc"]["b"]) | |
| gpt.trf_blocks[b].ff.layers[2].weight = assign( | |
| gpt.trf_blocks[b].ff.layers[2].weight, | |
| params["blocks"][b]["mlp"]["c_proj"]["w"].T) | |
| gpt.trf_blocks[b].ff.layers[2].bias = assign( | |
| gpt.trf_blocks[b].ff.layers[2].bias, | |
| params["blocks"][b]["mlp"]["c_proj"]["b"]) | |
| gpt.trf_blocks[b].norm1.scale = assign( | |
| gpt.trf_blocks[b].norm1.scale, | |
| params["blocks"][b]["ln_1"]["g"]) | |
| gpt.trf_blocks[b].norm1.shift = assign( | |
| gpt.trf_blocks[b].norm1.shift, | |
| params["blocks"][b]["ln_1"]["b"]) | |
| gpt.trf_blocks[b].norm2.scale = assign( | |
| gpt.trf_blocks[b].norm2.scale, | |
| params["blocks"][b]["ln_2"]["g"]) | |
| gpt.trf_blocks[b].norm2.shift = assign( | |
| gpt.trf_blocks[b].norm2.shift, | |
| params["blocks"][b]["ln_2"]["b"]) | |
| gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"]) | |
| gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"]) | |
| gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"]) | |
| def text_to_token_ids(text, tokenizer): | |
| encoded = tokenizer.encode(text, allowed_special={"<|endoftext|>"}) | |
| encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension | |
| return encoded_tensor | |
| def token_ids_to_text(token_ids, tokenizer): | |
| flat = token_ids.squeeze(0) # remove batch dimension | |
| return tokenizer.decode(flat.tolist()) | |
| def calc_loss_batch(input_batch, target_batch, model, device): | |
| input_batch, target_batch = input_batch.to(device), target_batch.to(device) | |
| logits = model(input_batch) | |
| loss = torch.nn.functional.cross_entropy(logits.flatten(0, 1), target_batch.flatten()) | |
| return loss | |
| def calc_loss_loader(data_loader, model, device, num_batches=None): | |
| total_loss = 0. | |
| if len(data_loader) == 0: | |
| return float("nan") | |
| elif num_batches is None: | |
| num_batches = len(data_loader) | |
| else: | |
| # Reduce the number of batches to match the total number of batches in the data loader | |
| # if num_batches exceeds the number of batches in the data loader | |
| num_batches = min(num_batches, len(data_loader)) | |
| for i, (input_batch, target_batch) in enumerate(data_loader): | |
| if i < num_batches: | |
| loss = calc_loss_batch(input_batch, target_batch, model, device) | |
| total_loss += loss.item() | |
| else: | |
| break | |
| return total_loss / num_batches | |
| def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses): | |
| fig, ax1 = plt.subplots(figsize=(5, 3)) | |
| # Plot training and validation loss against epochs | |
| ax1.plot(epochs_seen, train_losses, label="Training loss") | |
| ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss") | |
| ax1.set_xlabel("Epochs") | |
| ax1.set_ylabel("Loss") | |
| ax1.legend(loc="upper right") | |
| ax1.xaxis.set_major_locator(MaxNLocator(integer=True)) # only show integer labels on x-axis | |
| # Create a second x-axis for tokens seen | |
| ax2 = ax1.twiny() # Create a second x-axis that shares the same y-axis | |
| ax2.plot(tokens_seen, train_losses, alpha=0) # Invisible plot for aligning ticks | |
| ax2.set_xlabel("Tokens seen") | |
| fig.tight_layout() # Adjust layout to make room | |
| plt.savefig("loss-plot.pdf") | |
| plt.show() | |