Spaces:
Sleeping
Sleeping
Commit
·
142faac
1
Parent(s):
84d3480
update with our app
Browse files- Dockerfile +1 -1
- src/app.py +406 -0
- src/streamlit_app.py +0 -40
Dockerfile
CHANGED
|
@@ -18,4 +18,4 @@ EXPOSE 8501
|
|
| 18 |
|
| 19 |
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
|
| 20 |
|
| 21 |
-
ENTRYPOINT ["streamlit", "run", "src/
|
|
|
|
| 18 |
|
| 19 |
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
|
| 20 |
|
| 21 |
+
ENTRYPOINT ["streamlit", "run", "src/app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
src/app.py
ADDED
|
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Streamlit app for human evaluation of model outputs.
|
| 3 |
+
|
| 4 |
+
Allows users to select two models, compare their responses to the same inputs,
|
| 5 |
+
and record preferences for subsequent analysis.
|
| 6 |
+
"""
|
| 7 |
+
import os
|
| 8 |
+
import json
|
| 9 |
+
import csv
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
|
| 12 |
+
import streamlit as st
|
| 13 |
+
import pandas as pd
|
| 14 |
+
|
| 15 |
+
st.set_page_config(page_title="Model Comparison Evaluation", layout="wide")
|
| 16 |
+
|
| 17 |
+
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 18 |
+
DATA_DIR = os.path.join(SCRIPT_DIR, "for_experiments_prediction")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@st.cache_data
|
| 22 |
+
def load_models(data_dir):
|
| 23 |
+
"""
|
| 24 |
+
Discover prediction JSON files named 'predicted_vs_gt.json' and load flattened records for each model.
|
| 25 |
+
Returns a dict mapping model name to dict of {id: record}.
|
| 26 |
+
"""
|
| 27 |
+
model_paths = {}
|
| 28 |
+
for root, _, files in os.walk(data_dir):
|
| 29 |
+
for fname in files:
|
| 30 |
+
if fname == 'predicted_vs_gt.json':
|
| 31 |
+
path = os.path.join(root, fname)
|
| 32 |
+
rel = os.path.relpath(root, data_dir)
|
| 33 |
+
model_paths[rel] = path
|
| 34 |
+
models = {}
|
| 35 |
+
for model_name, path in sorted(model_paths.items()):
|
| 36 |
+
with open(path, 'r', encoding='utf-8') as f:
|
| 37 |
+
data = json.load(f)
|
| 38 |
+
records = {}
|
| 39 |
+
for section in data.values():
|
| 40 |
+
if isinstance(section, dict):
|
| 41 |
+
for sub in section.values():
|
| 42 |
+
for rec in sub:
|
| 43 |
+
records[rec['id']] = rec
|
| 44 |
+
elif isinstance(section, list):
|
| 45 |
+
for rec in section:
|
| 46 |
+
records[rec['id']] = rec
|
| 47 |
+
models[model_name] = records
|
| 48 |
+
return models
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def append_feedback(feedback_file, header, row):
|
| 52 |
+
"""
|
| 53 |
+
Append a single feedback row to TSV, writing header if file does not exist.
|
| 54 |
+
"""
|
| 55 |
+
write_header = not os.path.exists(feedback_file)
|
| 56 |
+
with open(feedback_file, 'a', newline='', encoding='utf-8') as f:
|
| 57 |
+
writer = csv.writer(f, delimiter='\t', quoting=csv.QUOTE_ALL)
|
| 58 |
+
if write_header:
|
| 59 |
+
writer.writerow(header)
|
| 60 |
+
writer.writerow(row)
|
| 61 |
+
|
| 62 |
+
@st.cache_data
|
| 63 |
+
def load_eval_tables(data_dir):
|
| 64 |
+
"""
|
| 65 |
+
Discover evaluation_table.parquet files under each model directory and load each into a pandas DataFrame.
|
| 66 |
+
Returns a dict mapping model name to its evaluation DataFrame.
|
| 67 |
+
"""
|
| 68 |
+
tables = {}
|
| 69 |
+
for root, _, files in os.walk(data_dir):
|
| 70 |
+
if 'evaluation_table.parquet' in files:
|
| 71 |
+
path = os.path.join(root, 'evaluation_table.parquet')
|
| 72 |
+
rel = os.path.relpath(root, data_dir)
|
| 73 |
+
tables[rel] = pd.read_parquet(path)
|
| 74 |
+
return tables
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def main():
|
| 78 |
+
st.title("Model Comparison Evaluation")
|
| 79 |
+
|
| 80 |
+
print(DATA_DIR)
|
| 81 |
+
models = load_models(DATA_DIR)
|
| 82 |
+
eval_tables = load_eval_tables(DATA_DIR)
|
| 83 |
+
all_cols = set()
|
| 84 |
+
for df in eval_tables.values():
|
| 85 |
+
all_cols.update(df.columns)
|
| 86 |
+
key_columns = {'gt_sac_id', 'gt_title'}
|
| 87 |
+
metric_columns = sorted(all_cols - key_columns)
|
| 88 |
+
fixed_metrics = [
|
| 89 |
+
'chemicals_accuracy',
|
| 90 |
+
'chemicals_f1_score',
|
| 91 |
+
'chemicals_precision',
|
| 92 |
+
'chemicals_recall',
|
| 93 |
+
'metal_accuracy',
|
| 94 |
+
'metal_f1_score',
|
| 95 |
+
'metal_precision',
|
| 96 |
+
'metal_recall',
|
| 97 |
+
'procedure_procedure_completeness_score',
|
| 98 |
+
'procedure_procedure_order_score',
|
| 99 |
+
'procedure_procedure_accuracy_score',
|
| 100 |
+
'support_accuracy',
|
| 101 |
+
'support_f1_score',
|
| 102 |
+
'support_precision',
|
| 103 |
+
'support_recall',
|
| 104 |
+
]
|
| 105 |
+
other_metrics = sorted([c for c in metric_columns if c not in fixed_metrics and not c.startswith('gt_')])
|
| 106 |
+
model_names = list(models.keys())
|
| 107 |
+
|
| 108 |
+
st.sidebar.header("Configuration")
|
| 109 |
+
def reset_index():
|
| 110 |
+
st.session_state.idx = 0
|
| 111 |
+
# Reset feedback file when models change
|
| 112 |
+
feedback_path = os.path.join(SCRIPT_DIR, 'feedback.tsv')
|
| 113 |
+
if os.path.exists(feedback_path):
|
| 114 |
+
os.remove(feedback_path)
|
| 115 |
+
|
| 116 |
+
selected = st.sidebar.multiselect(
|
| 117 |
+
"Select exactly two models to compare",
|
| 118 |
+
options=model_names,
|
| 119 |
+
key='models',
|
| 120 |
+
help="Choose two model variants for side-by-side comparison",
|
| 121 |
+
on_change=reset_index
|
| 122 |
+
)
|
| 123 |
+
if len(selected) != 2:
|
| 124 |
+
st.sidebar.info("Please select exactly two models.")
|
| 125 |
+
st.stop()
|
| 126 |
+
|
| 127 |
+
# Download button for feedback TSV
|
| 128 |
+
feedback_path = os.path.join(SCRIPT_DIR, 'feedback.tsv')
|
| 129 |
+
if os.path.exists(feedback_path):
|
| 130 |
+
with open(feedback_path, 'r', encoding='utf-8') as f:
|
| 131 |
+
tsv_data = f.read()
|
| 132 |
+
st.sidebar.download_button(
|
| 133 |
+
label="Download Feedback TSV",
|
| 134 |
+
data=tsv_data,
|
| 135 |
+
file_name="feedback.tsv",
|
| 136 |
+
mime="text/tab-separated-values"
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
m1, m2 = selected
|
| 140 |
+
recs1 = models[m1]
|
| 141 |
+
recs2 = models[m2]
|
| 142 |
+
common_ids = sorted(set(recs1.keys()) & set(recs2.keys()))
|
| 143 |
+
if not common_ids:
|
| 144 |
+
st.error("No common records between the selected models.")
|
| 145 |
+
st.stop()
|
| 146 |
+
|
| 147 |
+
if 'idx' not in st.session_state:
|
| 148 |
+
st.session_state.idx = 0
|
| 149 |
+
if 'feedback_saved' not in st.session_state:
|
| 150 |
+
st.session_state.feedback_saved = False
|
| 151 |
+
|
| 152 |
+
# Initialize fresh feedback file for new session
|
| 153 |
+
if 'session_initialized' not in st.session_state:
|
| 154 |
+
feedback_path = os.path.join(SCRIPT_DIR, 'feedback.tsv')
|
| 155 |
+
if os.path.exists(feedback_path):
|
| 156 |
+
os.remove(feedback_path)
|
| 157 |
+
st.session_state.session_initialized = True
|
| 158 |
+
|
| 159 |
+
total = len(common_ids)
|
| 160 |
+
idx = st.session_state.idx
|
| 161 |
+
if idx < 0:
|
| 162 |
+
idx = 0
|
| 163 |
+
if idx >= total:
|
| 164 |
+
st.write("### Evaluation complete! Thank you for your feedback.")
|
| 165 |
+
st.stop()
|
| 166 |
+
|
| 167 |
+
current_id = common_ids[idx]
|
| 168 |
+
rec1 = recs1[current_id]
|
| 169 |
+
rec2 = recs2[current_id]
|
| 170 |
+
|
| 171 |
+
st.markdown(f"**Record {idx+1}/{total} — ID: {current_id}**")
|
| 172 |
+
st.markdown("---")
|
| 173 |
+
st.subheader("Input Prompt")
|
| 174 |
+
st.code(rec1.get('input', ''), language='')
|
| 175 |
+
|
| 176 |
+
st.subheader("Model Responses and Ground Truth")
|
| 177 |
+
col1, col2, col3 = st.columns(3)
|
| 178 |
+
with col1:
|
| 179 |
+
st.markdown(f"**{m1}**")
|
| 180 |
+
st.text_area("", rec1.get('predicted', ''), height=600, key=f"resp1_{idx}")
|
| 181 |
+
with col2:
|
| 182 |
+
st.markdown(f"**{m2}**")
|
| 183 |
+
st.text_area("", rec2.get('predicted', ''), height=600, key=f"resp2_{idx}")
|
| 184 |
+
with col3:
|
| 185 |
+
st.markdown("**Ground Truth**")
|
| 186 |
+
st.text_area("", rec1.get('ground_truth', ''), height=600, key=f"gt_{idx}")
|
| 187 |
+
|
| 188 |
+
fcol1, fcol2, fcol3 = st.columns(3)
|
| 189 |
+
with fcol1:
|
| 190 |
+
df1 = eval_tables.get(m1)
|
| 191 |
+
if df1 is not None:
|
| 192 |
+
if 'gt_sac_id' in df1.columns:
|
| 193 |
+
key_val = rec1.get('gt_sac_id', rec1.get('sac_id'))
|
| 194 |
+
key_col = 'gt_sac_id'
|
| 195 |
+
elif 'gt_title' in df1.columns:
|
| 196 |
+
key_val = rec1.get('gt_title', rec1.get('title'))
|
| 197 |
+
key_col = 'gt_title'
|
| 198 |
+
else:
|
| 199 |
+
key_col = key_val = None
|
| 200 |
+
if key_col and key_val is not None:
|
| 201 |
+
row = df1[df1[key_col] == key_val]
|
| 202 |
+
if not row.empty:
|
| 203 |
+
fm_df = row[fixed_metrics].T
|
| 204 |
+
fm_df.columns = ['value']
|
| 205 |
+
st.table(fm_df)
|
| 206 |
+
else:
|
| 207 |
+
st.info("No fixed metrics for this record.")
|
| 208 |
+
else:
|
| 209 |
+
st.info("No evaluation table available for this model.")
|
| 210 |
+
|
| 211 |
+
with fcol2:
|
| 212 |
+
df2 = eval_tables.get(m2)
|
| 213 |
+
if df2 is not None:
|
| 214 |
+
if 'gt_sac_id' in df2.columns:
|
| 215 |
+
key_val = rec1.get('gt_sac_id', rec1.get('sac_id'))
|
| 216 |
+
key_col = 'gt_sac_id'
|
| 217 |
+
elif 'gt_title' in df2.columns:
|
| 218 |
+
key_val = rec1.get('gt_title', rec1.get('title'))
|
| 219 |
+
key_col = 'gt_title'
|
| 220 |
+
else:
|
| 221 |
+
key_col = key_val = None
|
| 222 |
+
if key_col and key_val is not None:
|
| 223 |
+
row = df2[df2[key_col] == key_val]
|
| 224 |
+
if not row.empty:
|
| 225 |
+
fm_df = row[fixed_metrics].T.astype(float).mean(axis=1)
|
| 226 |
+
fm_df.columns = ['value']
|
| 227 |
+
st.table(fm_df)
|
| 228 |
+
else:
|
| 229 |
+
st.info("No fixed metrics for this record.")
|
| 230 |
+
else:
|
| 231 |
+
st.info("No evaluation table available for this model.")
|
| 232 |
+
|
| 233 |
+
if other_metrics:
|
| 234 |
+
selected_metric = st.selectbox(
|
| 235 |
+
"Select additional metric to display",
|
| 236 |
+
options=other_metrics,
|
| 237 |
+
key=f"metric_sel_{idx}"
|
| 238 |
+
)
|
| 239 |
+
else:
|
| 240 |
+
selected_metric = None
|
| 241 |
+
|
| 242 |
+
if selected_metric:
|
| 243 |
+
mcol1, mcol2, mcol3 = st.columns(3)
|
| 244 |
+
with mcol1:
|
| 245 |
+
df1 = eval_tables.get(m1)
|
| 246 |
+
if df1 is not None and selected_metric in df1.columns:
|
| 247 |
+
if 'gt_sac_id' in df1.columns:
|
| 248 |
+
key_val = rec1.get('gt_sac_id', rec1.get('sac_id'))
|
| 249 |
+
key_col = 'gt_sac_id'
|
| 250 |
+
elif 'gt_title' in df1.columns:
|
| 251 |
+
key_val = rec1.get('gt_title', rec1.get('title'))
|
| 252 |
+
key_col = 'gt_title'
|
| 253 |
+
else:
|
| 254 |
+
key_col = key_val = None
|
| 255 |
+
if key_col and key_val is not None:
|
| 256 |
+
row = df1[df1[key_col] == key_val]
|
| 257 |
+
if not row.empty:
|
| 258 |
+
value = row[selected_metric].iloc[0]
|
| 259 |
+
try:
|
| 260 |
+
# Try to parse as JSON first
|
| 261 |
+
parsed_json = json.loads(str(value))
|
| 262 |
+
formatted_json = json.dumps(parsed_json, indent=2)
|
| 263 |
+
st.markdown(f"**{selected_metric}:**")
|
| 264 |
+
st.code(formatted_json, language='json')
|
| 265 |
+
except json.JSONDecodeError:
|
| 266 |
+
try:
|
| 267 |
+
# If JSON fails, try to evaluate as Python literal (handles single quotes)
|
| 268 |
+
import ast
|
| 269 |
+
parsed_json = ast.literal_eval(str(value))
|
| 270 |
+
formatted_json = json.dumps(parsed_json, indent=2)
|
| 271 |
+
st.markdown(f"**{selected_metric}:**")
|
| 272 |
+
st.code(formatted_json, language='json')
|
| 273 |
+
except (ValueError, SyntaxError):
|
| 274 |
+
# If all parsing fails, show as raw text
|
| 275 |
+
st.markdown(f"**{selected_metric}:** {value}")
|
| 276 |
+
except (TypeError, ValueError):
|
| 277 |
+
st.markdown(f"**{selected_metric}:** {value}")
|
| 278 |
+
else:
|
| 279 |
+
st.markdown(f"**{selected_metric}:** N/A")
|
| 280 |
+
else:
|
| 281 |
+
st.markdown(f"**{selected_metric}:** N/A")
|
| 282 |
+
|
| 283 |
+
with mcol2:
|
| 284 |
+
df2 = eval_tables.get(m2)
|
| 285 |
+
if df2 is not None and selected_metric in df2.columns:
|
| 286 |
+
if 'gt_sac_id' in df2.columns:
|
| 287 |
+
key_val = rec1.get('gt_sac_id', rec1.get('sac_id'))
|
| 288 |
+
key_col = 'gt_sac_id'
|
| 289 |
+
elif 'gt_title' in df2.columns:
|
| 290 |
+
key_val = rec1.get('gt_title', rec1.get('title'))
|
| 291 |
+
key_col = 'gt_title'
|
| 292 |
+
else:
|
| 293 |
+
key_col = key_val = None
|
| 294 |
+
if key_col and key_val is not None:
|
| 295 |
+
row = df2[df2[key_col] == key_val]
|
| 296 |
+
if not row.empty:
|
| 297 |
+
value = row[selected_metric].iloc[0]
|
| 298 |
+
try:
|
| 299 |
+
# Try to parse as JSON first
|
| 300 |
+
parsed_json = json.loads(str(value))
|
| 301 |
+
formatted_json = json.dumps(parsed_json, indent=2)
|
| 302 |
+
st.markdown(f"**{selected_metric}:**")
|
| 303 |
+
st.code(formatted_json, language='json')
|
| 304 |
+
except json.JSONDecodeError:
|
| 305 |
+
try:
|
| 306 |
+
# If JSON fails, try to evaluate as Python literal (handles single quotes)
|
| 307 |
+
import ast
|
| 308 |
+
parsed_json = ast.literal_eval(str(value))
|
| 309 |
+
formatted_json = json.dumps(parsed_json, indent=2)
|
| 310 |
+
st.markdown(f"**{selected_metric}:**")
|
| 311 |
+
st.code(formatted_json, language='json')
|
| 312 |
+
except (ValueError, SyntaxError):
|
| 313 |
+
# If all parsing fails, show as raw text
|
| 314 |
+
st.markdown(f"**{selected_metric}:** {value}")
|
| 315 |
+
except (TypeError, ValueError):
|
| 316 |
+
st.markdown(f"**{selected_metric}:** {value}")
|
| 317 |
+
else:
|
| 318 |
+
st.markdown(f"**{selected_metric}:** N/A")
|
| 319 |
+
else:
|
| 320 |
+
st.markdown(f"**{selected_metric}:** N/A")
|
| 321 |
+
|
| 322 |
+
with mcol3:
|
| 323 |
+
st.markdown("**Ground Truth Metrics**")
|
| 324 |
+
df_for_gt = eval_tables.get(m1)
|
| 325 |
+
if df_for_gt is None:
|
| 326 |
+
df_for_gt = eval_tables.get(m2)
|
| 327 |
+
if df_for_gt is not None:
|
| 328 |
+
if 'gt_sac_id' in df_for_gt.columns:
|
| 329 |
+
key_val = rec1.get('gt_sac_id', rec1.get('sac_id'))
|
| 330 |
+
key_col = 'gt_sac_id'
|
| 331 |
+
elif 'gt_title' in df_for_gt.columns:
|
| 332 |
+
key_val = rec1.get('gt_title', rec1.get('title'))
|
| 333 |
+
key_col = 'gt_title'
|
| 334 |
+
else:
|
| 335 |
+
key_col = key_val = None
|
| 336 |
+
if key_col and key_val is not None:
|
| 337 |
+
row = df_for_gt[df_for_gt[key_col] == key_val]
|
| 338 |
+
if not row.empty:
|
| 339 |
+
excluded_gt_fields = {'gt_procedure', 'gt_dspy_uuid', 'gt_dspy_split'}
|
| 340 |
+
gt_columns = [col for col in df_for_gt.columns if col.startswith('gt_') and col not in key_columns and col not in excluded_gt_fields]
|
| 341 |
+
if gt_columns:
|
| 342 |
+
for gt_col in gt_columns:
|
| 343 |
+
value = row[gt_col].iloc[0]
|
| 344 |
+
try:
|
| 345 |
+
# Try to parse as JSON first
|
| 346 |
+
parsed_json = json.loads(str(value))
|
| 347 |
+
formatted_json = json.dumps(parsed_json, indent=2)
|
| 348 |
+
st.markdown(f"**{gt_col}:**")
|
| 349 |
+
st.code(formatted_json, language='json')
|
| 350 |
+
except json.JSONDecodeError:
|
| 351 |
+
try:
|
| 352 |
+
# If JSON fails, try to evaluate as Python literal (handles single quotes)
|
| 353 |
+
import ast
|
| 354 |
+
parsed_json = ast.literal_eval(str(value))
|
| 355 |
+
formatted_json = json.dumps(parsed_json, indent=2)
|
| 356 |
+
st.markdown(f"**{gt_col}:**")
|
| 357 |
+
st.code(formatted_json, language='json')
|
| 358 |
+
except (ValueError, SyntaxError):
|
| 359 |
+
# If all parsing fails, show as raw text
|
| 360 |
+
st.markdown(f"**{gt_col}:** {value}")
|
| 361 |
+
except (TypeError, ValueError):
|
| 362 |
+
st.markdown(f"**{gt_col}:** {value}")
|
| 363 |
+
else:
|
| 364 |
+
st.info("No additional ground truth metrics available.")
|
| 365 |
+
else:
|
| 366 |
+
st.info("No ground truth metrics for this record.")
|
| 367 |
+
else:
|
| 368 |
+
st.info("No evaluation table available for ground truth metrics.")
|
| 369 |
+
|
| 370 |
+
st.subheader("Your Preference")
|
| 371 |
+
pref = st.radio(
|
| 372 |
+
"Which response do you prefer?", options=[m1, m2], key=f"pref_{idx}"
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
st.subheader("Comments (Optional)")
|
| 376 |
+
comments = st.text_area(
|
| 377 |
+
"Add any comments or notes about your preference:",
|
| 378 |
+
height=100,
|
| 379 |
+
key=f"comments_{idx}",
|
| 380 |
+
placeholder="Optional: Explain your reasoning or add any observations..."
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
if st.session_state.feedback_saved:
|
| 384 |
+
st.success("Feedback saved.")
|
| 385 |
+
st.session_state.feedback_saved = False
|
| 386 |
+
|
| 387 |
+
feedback_path = os.path.join(SCRIPT_DIR, 'feedback.tsv')
|
| 388 |
+
header = [
|
| 389 |
+
'timestamp', 'record_id', 'model_1', 'model_2', 'preference',
|
| 390 |
+
'input', 'response_1', 'response_2', 'ground_truth', 'comments'
|
| 391 |
+
]
|
| 392 |
+
row = [
|
| 393 |
+
datetime.now().isoformat(), current_id, m1, m2, pref,
|
| 394 |
+
rec1.get('input', ''), rec1.get('predicted', ''), rec2.get('predicted', ''),
|
| 395 |
+
rec1.get('ground_truth', ''), comments
|
| 396 |
+
]
|
| 397 |
+
def submit_feedback():
|
| 398 |
+
append_feedback(feedback_path, header, row)
|
| 399 |
+
st.session_state.idx += 1
|
| 400 |
+
st.session_state.feedback_saved = True
|
| 401 |
+
|
| 402 |
+
st.button("Submit and Next", on_click=submit_feedback)
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
if __name__ == '__main__':
|
| 406 |
+
main()
|
src/streamlit_app.py
DELETED
|
@@ -1,40 +0,0 @@
|
|
| 1 |
-
import altair as alt
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
-
import streamlit as st
|
| 5 |
-
|
| 6 |
-
"""
|
| 7 |
-
# Welcome to Streamlit!
|
| 8 |
-
|
| 9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
| 10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
| 11 |
-
forums](https://discuss.streamlit.io).
|
| 12 |
-
|
| 13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 14 |
-
"""
|
| 15 |
-
|
| 16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
| 17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
| 18 |
-
|
| 19 |
-
indices = np.linspace(0, 1, num_points)
|
| 20 |
-
theta = 2 * np.pi * num_turns * indices
|
| 21 |
-
radius = indices
|
| 22 |
-
|
| 23 |
-
x = radius * np.cos(theta)
|
| 24 |
-
y = radius * np.sin(theta)
|
| 25 |
-
|
| 26 |
-
df = pd.DataFrame({
|
| 27 |
-
"x": x,
|
| 28 |
-
"y": y,
|
| 29 |
-
"idx": indices,
|
| 30 |
-
"rand": np.random.randn(num_points),
|
| 31 |
-
})
|
| 32 |
-
|
| 33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
| 34 |
-
.mark_point(filled=True)
|
| 35 |
-
.encode(
|
| 36 |
-
x=alt.X("x", axis=None),
|
| 37 |
-
y=alt.Y("y", axis=None),
|
| 38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
| 39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
| 40 |
-
))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|