Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import pipeline | |
| # Load the image classification model | |
| pipe = pipeline("image-classification", model="SriramSridhar78/sriram-car-classifier") | |
| # Define the prediction function | |
| def predict(input_img): | |
| predictions = pipe(input_img) | |
| return input_img, {p["label"]: p["score"] for p in predictions} | |
| # Create Gradio UI | |
| gradio_app = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Image(label="Upload Car Image", sources=['upload', 'webcam'], type="pil"), | |
| outputs=[ | |
| gr.Image(label="Processed Image"), | |
| gr.Label(label="Car Model Type", num_top_classes=3) | |
| ], | |
| title="Car Classifier", | |
| description="Upload an image of a car and get the predicted class" | |
| ) | |
| # Launch the Gradio app | |
| gradio_app.launch() | |