Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +24 -0
- lightgbm_model.pkl +3 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify
|
| 2 |
+
import joblib
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
# Load trained LightGBM Model
|
| 6 |
+
model = joblib.load("Lightgbm_model.pkl")
|
| 7 |
+
|
| 8 |
+
app = Flask(__name__)
|
| 9 |
+
|
| 10 |
+
@app.route('/predict', methods=['POST'])
|
| 11 |
+
def predict():
|
| 12 |
+
data = request.json
|
| 13 |
+
features = np.array(data['features']).reshape(1, -1)
|
| 14 |
+
|
| 15 |
+
# Get probability prediction
|
| 16 |
+
probs = model.predict_proba(features)[:,1]
|
| 17 |
+
|
| 18 |
+
# Apply threshold 0.3
|
| 19 |
+
prediction = init(probs[0] > 0.3)
|
| 20 |
+
|
| 21 |
+
return jsonify({'attack_detected': prediction})
|
| 22 |
+
|
| 23 |
+
if __name__ == '__main__':
|
| 24 |
+
app.run(host='0.0.0.0', port=5000)
|
lightgbm_model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c83dffea34487df31f49464ce0879e8ed09881cceb730396947659fcff07d9c2
|
| 3 |
+
size 342532
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
flask
|
| 2 |
+
koblib
|
| 3 |
+
numpy
|
| 4 |
+
scikit-learn
|