Spaces:
Running
on
Zero
Running
on
Zero
Elea Zhong
commited on
Commit
·
26db3f0
1
Parent(s):
d786862
add training (lora, foundation, data)
Browse files- qwenimage/datamodels.py +40 -0
- qwenimage/datasets.py +56 -0
- qwenimage/finetuner.py +60 -0
- qwenimage/foundation.py +277 -0
- qwenimage/models/encode_prompt.py +59 -0
- qwenimage/models/pipeline_qwenimage_edit_plus.py +3 -0
- qwenimage/sampling.py +146 -0
- qwenimage/task.py +46 -0
- requirements.txt +1 -1
- scripts/logit_normal_dist.ipynb +0 -0
- scripts/scratch.ipynb +0 -0
- scripts/train.ipynb +529 -0
- scripts/train.py +64 -0
qwenimage/datamodels.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
from diffusers.image_processor import PipelineImageInput
|
| 5 |
+
from pydantic import BaseModel, ConfigDict, Field
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
from wandml.foundation.datamodels import FluxInputs
|
| 9 |
+
from wandml.trainers.datamodels import ExperimentTrainerParameters
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class QwenInputs(BaseModel):
|
| 13 |
+
image: PipelineImageInput | None = None
|
| 14 |
+
prompt: str| list[str] | None = None
|
| 15 |
+
height: int|None = None
|
| 16 |
+
width: int|None = None
|
| 17 |
+
negative_prompt: str| list[str] | None = None
|
| 18 |
+
true_cfg_scale: float = 1.0
|
| 19 |
+
num_inference_steps: int = 50
|
| 20 |
+
generator: torch.Generator | list[torch.Generator] | None = None
|
| 21 |
+
max_sequence_length: int = 512
|
| 22 |
+
vae_image_override: int | None = 512 * 512
|
| 23 |
+
|
| 24 |
+
model_config = ConfigDict(
|
| 25 |
+
arbitrary_types_allowed=True,
|
| 26 |
+
# extra="allow",
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class QwenConfig(ExperimentTrainerParameters):
|
| 31 |
+
load_multi_view_lora: bool = False
|
| 32 |
+
train_max_sequence_length: int = 512
|
| 33 |
+
train_dist: str = "linear" # "logit-normal"
|
| 34 |
+
train_shift: bool = True
|
| 35 |
+
inference_dist: str = "linear"
|
| 36 |
+
inference_shift: bool = True
|
| 37 |
+
static_mu: float | None = None
|
| 38 |
+
loss_weight_dist: str | None = None # "scaled_clipped_gaussian", "logit-normal"
|
| 39 |
+
|
| 40 |
+
vae_image_size: int = 1024 * 1024
|
qwenimage/datasets.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import random
|
| 5 |
+
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from wandml.core.datamodels import SourceDataType
|
| 8 |
+
from wandml.core.source import Source
|
| 9 |
+
|
| 10 |
+
class StyleSource(Source):
|
| 11 |
+
_data_types = [
|
| 12 |
+
SourceDataType(name="image", type=Image.Image),
|
| 13 |
+
SourceDataType(name="text", type=str),
|
| 14 |
+
]
|
| 15 |
+
def __init__(self, data_dir, prompt, set_len=None):
|
| 16 |
+
data_dir = Path(data_dir)
|
| 17 |
+
self.images = list(data_dir.iterdir())
|
| 18 |
+
self.prompt = prompt
|
| 19 |
+
self.set_len = set_len
|
| 20 |
+
|
| 21 |
+
def __len__(self):
|
| 22 |
+
if self.set_len is not None:
|
| 23 |
+
return self.set_len
|
| 24 |
+
else:
|
| 25 |
+
return len(self.images)
|
| 26 |
+
|
| 27 |
+
def __getitem__(self, idx):
|
| 28 |
+
idx = idx % len(self.images)
|
| 29 |
+
im_pil = Image.open(self.images[idx]).convert("RGB")
|
| 30 |
+
return im_pil, self.prompt
|
| 31 |
+
|
| 32 |
+
class StyleSourceWithRandomRef(Source):
|
| 33 |
+
_data_types = [
|
| 34 |
+
SourceDataType(name="image", type=Image.Image),
|
| 35 |
+
SourceDataType(name="text", type=str),
|
| 36 |
+
SourceDataType(name="reference", type=Image.Image),
|
| 37 |
+
]
|
| 38 |
+
def __init__(self, data_dir, prompt, ref_dir, set_len=None):
|
| 39 |
+
data_dir = Path(data_dir)
|
| 40 |
+
self.images = list(data_dir.iterdir())
|
| 41 |
+
self.ref_images = list(Path(ref_dir).iterdir())
|
| 42 |
+
self.prompt = prompt
|
| 43 |
+
self.set_len = set_len
|
| 44 |
+
|
| 45 |
+
def __len__(self):
|
| 46 |
+
if self.set_len is not None:
|
| 47 |
+
return self.set_len
|
| 48 |
+
else:
|
| 49 |
+
return len(self.images)
|
| 50 |
+
|
| 51 |
+
def __getitem__(self, idx):
|
| 52 |
+
idx = idx % len(self.images)
|
| 53 |
+
im_pil = Image.open(self.images[idx]).convert("RGB")
|
| 54 |
+
rand_ref = random.choice(self.ref_images)
|
| 55 |
+
ref_pil = Image.open(rand_ref).convert("RGB")
|
| 56 |
+
return im_pil, self.prompt, ref_pil
|
qwenimage/finetuner.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Optional
|
| 3 |
+
import uuid
|
| 4 |
+
import hashlib
|
| 5 |
+
|
| 6 |
+
from peft import LoraConfig
|
| 7 |
+
|
| 8 |
+
from wandml.utils.debug import ftimed
|
| 9 |
+
from wandml.finetune.lora.lora import LoraFinetuner
|
| 10 |
+
|
| 11 |
+
class QwenLoraFinetuner(LoraFinetuner):
|
| 12 |
+
|
| 13 |
+
@ftimed
|
| 14 |
+
def load(self, load_path, lora_rank=16, lora_config:Optional[LoraConfig]=None):
|
| 15 |
+
"""
|
| 16 |
+
Loads new lora on flux transformer if not loaded. Loads lora safetensors from load_path. Specify specific lora config using lora_rank or lora_config.
|
| 17 |
+
"""
|
| 18 |
+
if "transformer" in self.modules:
|
| 19 |
+
return super().load(load_path)
|
| 20 |
+
|
| 21 |
+
if lora_config:
|
| 22 |
+
self.foundation.transformer = self.add_module(
|
| 23 |
+
"transformer",
|
| 24 |
+
self.foundation.transformer,
|
| 25 |
+
lora_config=lora_config
|
| 26 |
+
)
|
| 27 |
+
else:
|
| 28 |
+
target_modules = [
|
| 29 |
+
'to_q',
|
| 30 |
+
'to_k',
|
| 31 |
+
'to_v',
|
| 32 |
+
'to_qkv',
|
| 33 |
+
|
| 34 |
+
'add_q_proj',
|
| 35 |
+
'add_k_proj',
|
| 36 |
+
'add_v_proj',
|
| 37 |
+
'to_added_qkv',
|
| 38 |
+
|
| 39 |
+
'proj',
|
| 40 |
+
'txt_in',
|
| 41 |
+
'img_in',
|
| 42 |
+
'txt_mod.1',
|
| 43 |
+
'img_mod.1',
|
| 44 |
+
'proj_out',
|
| 45 |
+
'to_add_out',
|
| 46 |
+
'to_out.0'
|
| 47 |
+
'net.2',
|
| 48 |
+
'linear',
|
| 49 |
+
'linear_2',
|
| 50 |
+
'linear_1',
|
| 51 |
+
]
|
| 52 |
+
self.foundation.transformer = self.add_module(
|
| 53 |
+
"transformer",
|
| 54 |
+
self.foundation.transformer,
|
| 55 |
+
target_modules=target_modules,
|
| 56 |
+
lora_rank=lora_rank,
|
| 57 |
+
)
|
| 58 |
+
self.foundation.transformer.to(dtype=self.foundation.dtype)
|
| 59 |
+
|
| 60 |
+
return super().load(load_path)
|
qwenimage/foundation.py
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import warnings
|
| 5 |
+
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from diffusers.pipelines.qwenimage.pipeline_qwenimage import QwenImagePipeline
|
| 8 |
+
import torch
|
| 9 |
+
from safetensors.torch import load_file, save_model
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from einops import rearrange
|
| 12 |
+
|
| 13 |
+
from qwenimage.datamodels import QwenConfig, QwenInputs
|
| 14 |
+
from qwenimage.debug import print_gpu_memory
|
| 15 |
+
from qwenimage.models.encode_prompt import encode_prompt
|
| 16 |
+
from qwenimage.models.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
|
| 17 |
+
from qwenimage.models.transformer_qwenimage import QwenImageTransformer2DModel
|
| 18 |
+
from qwenimage.sampling import TimestepDistUtils
|
| 19 |
+
from wandml import WandModel
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class QwenImageFoundation(WandModel):
|
| 23 |
+
SOURCE = "Qwen/Qwen-Image-Edit-2509"
|
| 24 |
+
INPUT_MODEL = QwenInputs
|
| 25 |
+
CACHE_DIR = "qwen_image_edit_2509"
|
| 26 |
+
PIPELINE = QwenImageEditPlusPipeline
|
| 27 |
+
|
| 28 |
+
serialize_modules = ["transformer"]
|
| 29 |
+
|
| 30 |
+
def __init__(self, config:QwenConfig, device=None):
|
| 31 |
+
super().__init__()
|
| 32 |
+
self.config:QwenConfig = config
|
| 33 |
+
self.dtype = torch.bfloat16
|
| 34 |
+
if device is None:
|
| 35 |
+
default_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 36 |
+
self.device = default_device
|
| 37 |
+
else:
|
| 38 |
+
self.device = device
|
| 39 |
+
print(f"{self.device=}")
|
| 40 |
+
|
| 41 |
+
pipe = self.PIPELINE.from_pretrained(
|
| 42 |
+
"Qwen/Qwen-Image-Edit-2509",
|
| 43 |
+
transformer=QwenImageTransformer2DModel.from_pretrained(
|
| 44 |
+
"Qwen/Qwen-Image-Edit-2509",
|
| 45 |
+
subfolder='transformer',
|
| 46 |
+
torch_dtype=self.dtype,
|
| 47 |
+
device_map=self.device
|
| 48 |
+
),
|
| 49 |
+
torch_dtype=self.dtype,
|
| 50 |
+
)
|
| 51 |
+
pipe = pipe.to(device=self.device, dtype=self.dtype)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
if config.load_multi_view_lora:
|
| 55 |
+
pipe.load_lora_weights(
|
| 56 |
+
"dx8152/Qwen-Edit-2509-Multiple-angles",
|
| 57 |
+
weight_name="镜头转换.safetensors", adapter_name="angles"
|
| 58 |
+
)
|
| 59 |
+
pipe.set_adapters(["angles"], adapter_weights=[1.])
|
| 60 |
+
pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.25)
|
| 61 |
+
pipe.unload_lora_weights()
|
| 62 |
+
|
| 63 |
+
self.pipe = pipe
|
| 64 |
+
self.vae = self.pipe.vae
|
| 65 |
+
self.transformer = self.pipe.transformer
|
| 66 |
+
self.text_encoder = self.pipe.text_encoder
|
| 67 |
+
self.scheduler = self.pipe.scheduler
|
| 68 |
+
|
| 69 |
+
self.vae.to(self.dtype)
|
| 70 |
+
self.vae.eval()
|
| 71 |
+
self.vae.requires_grad_(False)
|
| 72 |
+
self.text_encoder.eval()
|
| 73 |
+
self.text_encoder.requires_grad_(False)
|
| 74 |
+
self.text_encoder_device = None
|
| 75 |
+
self.transformer.eval()
|
| 76 |
+
self.transformer.requires_grad_(False)
|
| 77 |
+
|
| 78 |
+
self.timestep_dist_utils = TimestepDistUtils(
|
| 79 |
+
min_seq_len=self.scheduler.config.base_image_seq_len,
|
| 80 |
+
max_seq_len=self.scheduler.config.max_image_seq_len,
|
| 81 |
+
min_mu=self.scheduler.config.base_shift,
|
| 82 |
+
max_mu=self.scheduler.config.max_shift,
|
| 83 |
+
train_dist=self.config.train_dist,
|
| 84 |
+
train_shift=self.config.train_shift,
|
| 85 |
+
inference_dist=self.config.inference_dist,
|
| 86 |
+
inference_shift=self.config.inference_shift,
|
| 87 |
+
static_mu=self.config.static_mu,
|
| 88 |
+
loss_weight_dist=self.config.loss_weight_dist,
|
| 89 |
+
)
|
| 90 |
+
self.static_prompt_embeds = None
|
| 91 |
+
|
| 92 |
+
def load(self, load_path):
|
| 93 |
+
if not isinstance(load_path, Path):
|
| 94 |
+
load_path = Path(load_path)
|
| 95 |
+
if not load_path.is_dir():
|
| 96 |
+
raise ValueError(f"Expected {load_path=} to be a directory")
|
| 97 |
+
for module_name in self.serialize_modules:
|
| 98 |
+
model_state_dict = load_file(load_path / f"{module_name}.safetensors")
|
| 99 |
+
missing, unexpected = getattr(self, module_name).load_state_dict(model_state_dict, strict=False, assign=True)
|
| 100 |
+
if missing:
|
| 101 |
+
warnings.warn(f"{module_name} missing {missing}")
|
| 102 |
+
if unexpected:
|
| 103 |
+
warnings.warn(f"{module_name} unexpected {unexpected}")
|
| 104 |
+
|
| 105 |
+
def save(self, save_path, skip=False):
|
| 106 |
+
if skip: return
|
| 107 |
+
|
| 108 |
+
if not isinstance(save_path, Path):
|
| 109 |
+
save_path = Path(save_path)
|
| 110 |
+
if not save_path.is_dir():
|
| 111 |
+
raise ValueError(f"Expected {save_path=} to be a directory")
|
| 112 |
+
|
| 113 |
+
save_path.mkdir(parents=True, exist_ok=True)
|
| 114 |
+
|
| 115 |
+
for module_name in self.serialize_modules:
|
| 116 |
+
save_model(getattr(self, module_name), save_path / f"{module_name}.safetensors")
|
| 117 |
+
print(f"Saved {module_name} to {save_path}")
|
| 118 |
+
|
| 119 |
+
def get_train_params(self):
|
| 120 |
+
return [{"params": [p for p in self.transformer.parameters() if p.requires_grad]}]
|
| 121 |
+
|
| 122 |
+
def pil_to_latents(self, images):
|
| 123 |
+
image = self.pipe.image_processor.preprocess(images)
|
| 124 |
+
image = image.unsqueeze(2) # N, C, F=1, H, W
|
| 125 |
+
image = image.to(device=self.device, dtype=self.dtype)
|
| 126 |
+
latents = self.pipe.vae.encode(image).latent_dist.mode() # argmax
|
| 127 |
+
|
| 128 |
+
latents_mean = (
|
| 129 |
+
torch.tensor(self.pipe.vae.config.latents_mean)
|
| 130 |
+
.view(1, self.pipe.vae.config.z_dim, 1, 1, 1)
|
| 131 |
+
.to(latents.device, latents.dtype)
|
| 132 |
+
)
|
| 133 |
+
latents_std = (
|
| 134 |
+
torch.tensor(self.pipe.vae.config.latents_std)
|
| 135 |
+
.view(1, self.pipe.vae.config.z_dim, 1, 1, 1)
|
| 136 |
+
.to(latents.device, latents.dtype)
|
| 137 |
+
)
|
| 138 |
+
latents = (latents - latents_mean) / latents_std
|
| 139 |
+
latents = latents.squeeze(2)
|
| 140 |
+
return latents.to(dtype=self.dtype)
|
| 141 |
+
|
| 142 |
+
def latents_to_pil(self, latents):
|
| 143 |
+
latents = latents.clone().detach()
|
| 144 |
+
latents = latents.unsqueeze(2)
|
| 145 |
+
|
| 146 |
+
latents = latents.to(self.dtype)
|
| 147 |
+
latents_mean = (
|
| 148 |
+
torch.tensor(self.pipe.vae.config.latents_mean)
|
| 149 |
+
.view(1, self.pipe.vae.config.z_dim, 1, 1, 1)
|
| 150 |
+
.to(latents.device, latents.dtype)
|
| 151 |
+
)
|
| 152 |
+
latents_std = (
|
| 153 |
+
torch.tensor(self.pipe.vae.config.latents_std)
|
| 154 |
+
.view(1, self.pipe.vae.config.z_dim, 1, 1, 1)
|
| 155 |
+
.to(latents.device, latents.dtype)
|
| 156 |
+
)
|
| 157 |
+
latents = latents * latents_std + latents_mean
|
| 158 |
+
|
| 159 |
+
latents = latents.to(device=self.device, dtype=self.dtype)
|
| 160 |
+
image = self.pipe.vae.decode(latents, return_dict=False)[0][:, :, 0] # F = 1
|
| 161 |
+
image = self.pipe.image_processor.postprocess(image)
|
| 162 |
+
return image
|
| 163 |
+
|
| 164 |
+
@staticmethod
|
| 165 |
+
def pack_latents(latents):
|
| 166 |
+
packed = rearrange(latents, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
| 167 |
+
return packed
|
| 168 |
+
|
| 169 |
+
@staticmethod
|
| 170 |
+
def unpack_latents(packed, h, w):
|
| 171 |
+
latents = rearrange(packed, "b (h w) (c ph pw) -> b c (h ph) (w pw)", ph=2, pw=2, h=h, w=w)
|
| 172 |
+
return latents
|
| 173 |
+
|
| 174 |
+
def set_static_prompt(self, prompt:str):
|
| 175 |
+
self.text_encoder.to(device=self.device)
|
| 176 |
+
if self.text_encoder_device != "cuda":
|
| 177 |
+
self.text_encoder_device = "cuda"
|
| 178 |
+
with torch.no_grad():
|
| 179 |
+
prompt_embeds, prompt_embeds_mask = encode_prompt(
|
| 180 |
+
self.text_encoder,
|
| 181 |
+
self.pipe.tokenizer,
|
| 182 |
+
prompt,
|
| 183 |
+
device=self.device,
|
| 184 |
+
dtype=self.dtype,
|
| 185 |
+
max_sequence_length = self.config.train_max_sequence_length,
|
| 186 |
+
)
|
| 187 |
+
prompt_embeds = prompt_embeds.cpu().clone().detach()
|
| 188 |
+
prompt_embeds_mask = prompt_embeds_mask.cpu().clone().detach()
|
| 189 |
+
self.static_prompt_embeds = (prompt_embeds, prompt_embeds_mask)
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def preprocess_batch(self, batch):
|
| 193 |
+
prompts = batch["text"]
|
| 194 |
+
|
| 195 |
+
if self.static_prompt_embeds is not None:
|
| 196 |
+
prompt_embeds, prompt_embeds_mask = self.static_prompt_embeds
|
| 197 |
+
|
| 198 |
+
self.text_encoder.to(device=self.device)
|
| 199 |
+
if self.text_encoder_device != "cuda":
|
| 200 |
+
self.text_encoder_device = "cuda"
|
| 201 |
+
|
| 202 |
+
with torch.no_grad():
|
| 203 |
+
prompt_embeds, prompt_embeds_mask = encode_prompt(
|
| 204 |
+
self.text_encoder,
|
| 205 |
+
self.pipe.tokenizer,
|
| 206 |
+
prompts,
|
| 207 |
+
device=self.device,
|
| 208 |
+
dtype=self.dtype,
|
| 209 |
+
max_sequence_length = self.config.train_max_sequence_length,
|
| 210 |
+
)
|
| 211 |
+
prompt_embeds = prompt_embeds.cpu().clone().detach()
|
| 212 |
+
prompt_embeds_mask = prompt_embeds_mask.cpu().clone().detach()
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
batch["prompt_embeds"] = (prompt_embeds, prompt_embeds_mask)
|
| 216 |
+
|
| 217 |
+
return batch
|
| 218 |
+
|
| 219 |
+
def single_step(self, batch) -> torch.Tensor:
|
| 220 |
+
self.text_encoder.to(device="cpu") # offload
|
| 221 |
+
if self.text_encoder_device != "cpu":
|
| 222 |
+
self.text_encoder_device = "cpu"
|
| 223 |
+
print_gpu_memory()
|
| 224 |
+
|
| 225 |
+
if "prompt_embeds" not in batch:
|
| 226 |
+
batch = self.preprocess_batch(batch)
|
| 227 |
+
prompt_embeds, prompt_embeds_mask = batch["prompt_embeds"]
|
| 228 |
+
prompt_embeds = prompt_embeds.to(device=self.device)
|
| 229 |
+
prompt_embeds_mask = prompt_embeds_mask.to(device=self.device)
|
| 230 |
+
|
| 231 |
+
images = batch["image"]
|
| 232 |
+
x_0 = self.pil_to_latents(images).to(device=self.device, dtype=self.dtype)
|
| 233 |
+
x_1 = torch.randn_like(x_0).to(device=self.device, dtype=self.dtype)
|
| 234 |
+
seq_len = self.timestep_dist_utils.get_seq_len(x_0)
|
| 235 |
+
batch_size = x_0.shape[0]
|
| 236 |
+
t = self.timestep_dist_utils.get_train_t([batch_size], seq_len=seq_len).to(device=self.device, dtype=self.dtype)
|
| 237 |
+
x_t = (1.0 - t) * x_0 + t * x_1
|
| 238 |
+
|
| 239 |
+
x_t_1d = self.pack_latents(x_t)
|
| 240 |
+
|
| 241 |
+
l_height, l_width = x_0.shape[-2:]
|
| 242 |
+
img_shapes = [
|
| 243 |
+
[(1, l_height // 2, l_width // 2), ]
|
| 244 |
+
] * batch_size
|
| 245 |
+
txt_seq_lens = prompt_embeds_mask.sum(dim=1).tolist()
|
| 246 |
+
image_rotary_emb = self.transformer.pos_embed(img_shapes, txt_seq_lens, device=x_0.device)
|
| 247 |
+
|
| 248 |
+
v_pred_1d = self.transformer(
|
| 249 |
+
hidden_states=x_t_1d,
|
| 250 |
+
encoder_hidden_states=prompt_embeds,
|
| 251 |
+
encoder_hidden_states_mask=prompt_embeds_mask,
|
| 252 |
+
timestep=t,
|
| 253 |
+
image_rotary_emb=image_rotary_emb,
|
| 254 |
+
return_dict=False,
|
| 255 |
+
)[0]
|
| 256 |
+
|
| 257 |
+
v_pred_2d = self.unpack_latents(v_pred_1d, h=l_height//2, w=l_width//2)
|
| 258 |
+
v_gt_2d = x_1 - x_0
|
| 259 |
+
|
| 260 |
+
if self.config.loss_weight_dist is not None:
|
| 261 |
+
loss = F.mse_loss(v_pred_2d, v_gt_2d, reduction="none").mean(dim=[1,2,3])
|
| 262 |
+
weights = self.timestep_dist_utils.get_loss_weighting(t)
|
| 263 |
+
loss = torch.mean(loss * weights)
|
| 264 |
+
else:
|
| 265 |
+
loss = F.mse_loss(v_pred_2d, v_gt_2d, reduction="mean")
|
| 266 |
+
|
| 267 |
+
return loss
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
def base_pipe(self, inputs: QwenInputs) -> list[Image]:
|
| 271 |
+
self.text_encoder.to(device=self.device)
|
| 272 |
+
if self.text_encoder_device != "cuda":
|
| 273 |
+
self.text_encoder_device = "cuda"
|
| 274 |
+
return self.pipe(**inputs.model_dump()).images
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
|
qwenimage/models/encode_prompt.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer
|
| 3 |
+
|
| 4 |
+
tokenizer_max_length = 1024
|
| 5 |
+
prompt_template_encode = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
|
| 6 |
+
prompt_template_encode_start_idx = 34
|
| 7 |
+
default_sample_size = 128
|
| 8 |
+
|
| 9 |
+
def _extract_masked_hidden(hidden_states: torch.Tensor, mask: torch.Tensor):
|
| 10 |
+
bool_mask = mask.bool()
|
| 11 |
+
valid_lengths = bool_mask.sum(dim=1)
|
| 12 |
+
selected = hidden_states[bool_mask]
|
| 13 |
+
split_result = torch.split(selected, valid_lengths.tolist(), dim=0)
|
| 14 |
+
|
| 15 |
+
return split_result
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def encode_prompt(
|
| 19 |
+
text_encoder: Qwen2_5_VLForConditionalGeneration,
|
| 20 |
+
tokenizer: Qwen2Tokenizer,
|
| 21 |
+
prompt: str | list[str],
|
| 22 |
+
device: torch.device | None = None,
|
| 23 |
+
dtype: torch.dtype | None = None,
|
| 24 |
+
max_sequence_length: int|None = 1024,
|
| 25 |
+
):
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 29 |
+
|
| 30 |
+
template = prompt_template_encode
|
| 31 |
+
drop_idx = prompt_template_encode_start_idx
|
| 32 |
+
txt = [template.format(e) for e in prompt]
|
| 33 |
+
txt_tokens = tokenizer(
|
| 34 |
+
txt, max_length=tokenizer_max_length + drop_idx, padding=True, truncation=True, return_tensors="pt"
|
| 35 |
+
).to(device)
|
| 36 |
+
encoder_hidden_states = text_encoder(
|
| 37 |
+
input_ids=txt_tokens.input_ids,
|
| 38 |
+
attention_mask=txt_tokens.attention_mask,
|
| 39 |
+
output_hidden_states=True,
|
| 40 |
+
)
|
| 41 |
+
hidden_states = encoder_hidden_states.hidden_states[-1]
|
| 42 |
+
split_hidden_states = _extract_masked_hidden(hidden_states, txt_tokens.attention_mask)
|
| 43 |
+
split_hidden_states = [e[drop_idx:] for e in split_hidden_states]
|
| 44 |
+
attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states]
|
| 45 |
+
max_seq_len = max([e.size(0) for e in split_hidden_states])
|
| 46 |
+
prompt_embeds = torch.stack(
|
| 47 |
+
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states]
|
| 48 |
+
)
|
| 49 |
+
prompt_embeds_mask = torch.stack(
|
| 50 |
+
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list]
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 54 |
+
|
| 55 |
+
if max_sequence_length is not None:
|
| 56 |
+
prompt_embeds = prompt_embeds[:, :max_sequence_length]
|
| 57 |
+
prompt_embeds_mask = prompt_embeds_mask[:, :max_sequence_length]
|
| 58 |
+
|
| 59 |
+
return prompt_embeds, prompt_embeds_mask
|
qwenimage/models/pipeline_qwenimage_edit_plus.py
CHANGED
|
@@ -763,6 +763,7 @@ class QwenImageEditPlusPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
|
|
| 763 |
# 5. Prepare timesteps
|
| 764 |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
| 765 |
image_seq_len = latents.shape[1]
|
|
|
|
| 766 |
mu = calculate_shift(
|
| 767 |
image_seq_len,
|
| 768 |
self.scheduler.config.get("base_image_seq_len", 256),
|
|
@@ -770,6 +771,7 @@ class QwenImageEditPlusPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
|
|
| 770 |
self.scheduler.config.get("base_shift", 0.5),
|
| 771 |
self.scheduler.config.get("max_shift", 1.15),
|
| 772 |
)
|
|
|
|
| 773 |
timesteps, num_inference_steps = retrieve_timesteps(
|
| 774 |
self.scheduler,
|
| 775 |
num_inference_steps,
|
|
@@ -777,6 +779,7 @@ class QwenImageEditPlusPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
|
|
| 777 |
sigmas=sigmas,
|
| 778 |
mu=mu,
|
| 779 |
)
|
|
|
|
| 780 |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 781 |
self._num_timesteps = len(timesteps)
|
| 782 |
|
|
|
|
| 763 |
# 5. Prepare timesteps
|
| 764 |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
| 765 |
image_seq_len = latents.shape[1]
|
| 766 |
+
print(f"{image_seq_len=}")
|
| 767 |
mu = calculate_shift(
|
| 768 |
image_seq_len,
|
| 769 |
self.scheduler.config.get("base_image_seq_len", 256),
|
|
|
|
| 771 |
self.scheduler.config.get("base_shift", 0.5),
|
| 772 |
self.scheduler.config.get("max_shift", 1.15),
|
| 773 |
)
|
| 774 |
+
print(f"{mu=}")
|
| 775 |
timesteps, num_inference_steps = retrieve_timesteps(
|
| 776 |
self.scheduler,
|
| 777 |
num_inference_steps,
|
|
|
|
| 779 |
sigmas=sigmas,
|
| 780 |
mu=mu,
|
| 781 |
)
|
| 782 |
+
print(f"{timesteps=}")
|
| 783 |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 784 |
self._num_timesteps = len(timesteps)
|
| 785 |
|
qwenimage/sampling.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
# math functions for sampling schedule
|
| 5 |
+
import math
|
| 6 |
+
from typing import Callable, Literal
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class TimestepDistUtils:
|
| 13 |
+
|
| 14 |
+
@staticmethod
|
| 15 |
+
def t_shift(mu: float, sigma: float, t: torch.Tensor):
|
| 16 |
+
"""
|
| 17 |
+
see eq.(12) of https://arxiv.org/abs/2506.15742 Black Forest Labs (2025)
|
| 18 |
+
t' = \frac{e^{\mu}}{e^{\mu} + (1/t - 1)^{\sigma}}
|
| 19 |
+
"""
|
| 20 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
| 21 |
+
|
| 22 |
+
@staticmethod
|
| 23 |
+
def lerp_mu( # qwen params
|
| 24 |
+
seq_len,
|
| 25 |
+
min_seq_len: int = 256,
|
| 26 |
+
max_seq_len: int = 8192,
|
| 27 |
+
min_mu: float = 0.5,
|
| 28 |
+
max_mu: float = 0.9,
|
| 29 |
+
train_dist: str = "linear",
|
| 30 |
+
):
|
| 31 |
+
"""
|
| 32 |
+
Resolution-dependent shifting of timestep schedules
|
| 33 |
+
from Esser et al. https://arxiv.org/abs/2403.03206
|
| 34 |
+
updated with default params for Qwen
|
| 35 |
+
"""
|
| 36 |
+
m = (max_mu - min_mu) / (max_seq_len - min_seq_len)
|
| 37 |
+
b = min_mu - m * min_seq_len
|
| 38 |
+
mu = seq_len * m + b
|
| 39 |
+
return mu
|
| 40 |
+
|
| 41 |
+
@staticmethod
|
| 42 |
+
def logit_normal(t, mu=0.0, sigma=1.0):
|
| 43 |
+
"""
|
| 44 |
+
Logit normal PDF, as in logistic(randn(mu, sigma))
|
| 45 |
+
"""
|
| 46 |
+
pdf = torch.zeros_like(t)
|
| 47 |
+
z = (torch.logit(t) - mu) / sigma
|
| 48 |
+
coef = 1.0 / (sigma * torch.sqrt(torch.tensor(2.0 * torch.pi)))
|
| 49 |
+
pdf = coef * torch.exp(-0.5 * z**2) / (t * (1.0 - t))
|
| 50 |
+
return pdf
|
| 51 |
+
|
| 52 |
+
@staticmethod
|
| 53 |
+
def scaled_clipped_gaussian(t):
|
| 54 |
+
"""
|
| 55 |
+
Heuristic distribution for gaussian wuth mu = 0.5 and sigma=0.5,
|
| 56 |
+
clipped to [0,1], with int_0^1dt =1.0
|
| 57 |
+
"""
|
| 58 |
+
y = torch.exp(-2 * (t - 0.5) ** 2)
|
| 59 |
+
y = (y - 0.606) * 4.02
|
| 60 |
+
return y
|
| 61 |
+
|
| 62 |
+
@staticmethod
|
| 63 |
+
def get_seq_len(latents):
|
| 64 |
+
if latents.dim() == 4 or latents.dim() == 5:
|
| 65 |
+
h,w = latents.shape[-2:]
|
| 66 |
+
seq_len = (h//2)*(w//2)
|
| 67 |
+
elif latents.dim() == 3:
|
| 68 |
+
seq_len = latents.shape[1] # [B, L=h*w, C]
|
| 69 |
+
else:
|
| 70 |
+
raise ValueError(f"{latents.dim()=} not in 3,4,5")
|
| 71 |
+
return seq_len
|
| 72 |
+
|
| 73 |
+
def __init__(
|
| 74 |
+
self,
|
| 75 |
+
min_seq_len=256,
|
| 76 |
+
max_seq_len=8192,
|
| 77 |
+
min_mu=0.5,
|
| 78 |
+
max_mu=0.9,
|
| 79 |
+
train_dist:Literal["logit-normal", "linear"]="linear",
|
| 80 |
+
train_shift:bool=True,
|
| 81 |
+
inference_dist:Literal["logit-normal", "linear"]="linear",
|
| 82 |
+
inference_shift:bool=True,
|
| 83 |
+
static_mu:float|None=None,
|
| 84 |
+
loss_weight_dist: Literal["scaled_clipped_gaussian", "logit-normal"] | None = None,
|
| 85 |
+
):
|
| 86 |
+
self.min_seq_len = min_seq_len
|
| 87 |
+
self.max_seq_len = max_seq_len
|
| 88 |
+
self.min_mu = min_mu
|
| 89 |
+
self.max_mu = max_mu
|
| 90 |
+
self.train_dist = train_dist
|
| 91 |
+
self.train_shift = train_shift
|
| 92 |
+
self.inference_dist = inference_dist
|
| 93 |
+
self.inference_shift = inference_shift
|
| 94 |
+
self.static_mu = static_mu
|
| 95 |
+
self.loss_weight_dist = loss_weight_dist
|
| 96 |
+
|
| 97 |
+
def lin_t_to_dist(self, t, seq_len=None):
|
| 98 |
+
if self.train_dist == "logit-normal":
|
| 99 |
+
t = self.logit_normal_pdf(t)
|
| 100 |
+
elif self.train_dist == "linear":
|
| 101 |
+
pass
|
| 102 |
+
else:
|
| 103 |
+
raise ValueError()
|
| 104 |
+
|
| 105 |
+
if self.train_shift:
|
| 106 |
+
if self.static_mu:
|
| 107 |
+
mu = self.static_mu
|
| 108 |
+
elif seq_len:
|
| 109 |
+
mu = self.lerp_mu(seq_len, self.min_seq_len, self.max_seq_len, self.min_mu, self.max_mu)
|
| 110 |
+
else:
|
| 111 |
+
raise ValueError()
|
| 112 |
+
t = self.t_shift(mu, 1.0, t)
|
| 113 |
+
return t
|
| 114 |
+
|
| 115 |
+
def get_train_t(self, size, seq_len=None):
|
| 116 |
+
t = torch.rand(size)
|
| 117 |
+
t = self.lin_t_to_dist(t, seq_len=seq_len)
|
| 118 |
+
return t
|
| 119 |
+
|
| 120 |
+
def get_loss_weighting(self, t):
|
| 121 |
+
if self.loss_weight_dist == "scaled_clipped_gaussian":
|
| 122 |
+
w = self.scaled_clipped_gaussian(t)
|
| 123 |
+
elif self.loss_weight_dist == "logit-normal":
|
| 124 |
+
w = self.logit_normal_pdf(t)
|
| 125 |
+
elif self.loss_weight_dist is None:
|
| 126 |
+
w = torch.ones_like(t)
|
| 127 |
+
else:
|
| 128 |
+
raise ValueError()
|
| 129 |
+
return w
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def get_inference_t(self, steps, strength=1.0, seq_len=None, clip_by_strength=True):
|
| 133 |
+
if clip_by_strength:
|
| 134 |
+
true_steps = max(1, int(strength * steps)) + 1
|
| 135 |
+
else:
|
| 136 |
+
true_steps = max(1, steps) + 1
|
| 137 |
+
t = torch.linspace(strength, 0.0, true_steps)
|
| 138 |
+
t = self.lin_t_to_dist(t, seq_len=seq_len)
|
| 139 |
+
return t
|
| 140 |
+
|
| 141 |
+
def inference_ode_step(self, noise_pred: torch.Tensor, latents: torch.Tensor, index: int, t_schedule: torch.Tensor):
|
| 142 |
+
t = t_schedule[index]
|
| 143 |
+
t_next = t_schedule[index + 1]
|
| 144 |
+
d_t = t_next - t
|
| 145 |
+
latents = latents + d_t * noise_pred
|
| 146 |
+
return latents
|
qwenimage/task.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import torch
|
| 3 |
+
from torchvision.transforms import v2 as T
|
| 4 |
+
|
| 5 |
+
from wandml.core.datamodels import SourceDataType
|
| 6 |
+
from wandml.core.task import Task
|
| 7 |
+
from wandml.data.transforms import RemoveAlphaTransform, RandomDownsize
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
image_transforms = T.Compose([
|
| 11 |
+
RemoveAlphaTransform(bg_color_rgb=(34, 34, 34)),
|
| 12 |
+
T.ToImage(),
|
| 13 |
+
T.RGB(),
|
| 14 |
+
RandomDownsize(sizes=(384, 512, 768)),
|
| 15 |
+
T.ToDtype(torch.float, scale=True),
|
| 16 |
+
])
|
| 17 |
+
|
| 18 |
+
class TextToImageTask(Task):
|
| 19 |
+
data_types = [
|
| 20 |
+
SourceDataType(name="text", type=str),
|
| 21 |
+
SourceDataType(name="image", type=Image.Image),
|
| 22 |
+
]
|
| 23 |
+
type_transforms = [
|
| 24 |
+
Task.identity,
|
| 25 |
+
image_transforms,
|
| 26 |
+
]
|
| 27 |
+
sample_input_dict = {
|
| 28 |
+
"prompt": SourceDataType(name="text", type=str),
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class TextToImageWithRefTask(Task):
|
| 33 |
+
data_types = [
|
| 34 |
+
SourceDataType(name="text", type=str),
|
| 35 |
+
SourceDataType(name="image", type=Image.Image),
|
| 36 |
+
SourceDataType(name="reference", type=Image.Image),
|
| 37 |
+
]
|
| 38 |
+
type_transforms = [
|
| 39 |
+
Task.identity,
|
| 40 |
+
image_transforms,
|
| 41 |
+
image_transforms,
|
| 42 |
+
]
|
| 43 |
+
sample_input_dict = {
|
| 44 |
+
"prompt": SourceDataType(name="text", type=str),
|
| 45 |
+
"image": SourceDataType(name="reference", type=Image.Image),
|
| 46 |
+
}
|
requirements.txt
CHANGED
|
@@ -10,7 +10,7 @@ dashscope
|
|
| 10 |
kernels
|
| 11 |
torchvision
|
| 12 |
peft
|
| 13 |
-
torchao==0.
|
| 14 |
pydantic
|
| 15 |
pandas
|
| 16 |
modal
|
|
|
|
| 10 |
kernels
|
| 11 |
torchvision
|
| 12 |
peft
|
| 13 |
+
torchao==0.14.1
|
| 14 |
pydantic
|
| 15 |
pandas
|
| 16 |
modal
|
scripts/logit_normal_dist.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
scripts/scratch.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
scripts/train.ipynb
ADDED
|
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "faf9556d",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [
|
| 9 |
+
{
|
| 10 |
+
"name": "stdout",
|
| 11 |
+
"output_type": "stream",
|
| 12 |
+
"text": [
|
| 13 |
+
"/home/ubuntu/Qwen-Image-Edit-Angles\n"
|
| 14 |
+
]
|
| 15 |
+
}
|
| 16 |
+
],
|
| 17 |
+
"source": [
|
| 18 |
+
"%cd /home/ubuntu/Qwen-Image-Edit-Angles"
|
| 19 |
+
]
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"cell_type": "code",
|
| 23 |
+
"execution_count": 2,
|
| 24 |
+
"id": "d74b1b7e",
|
| 25 |
+
"metadata": {},
|
| 26 |
+
"outputs": [
|
| 27 |
+
{
|
| 28 |
+
"name": "stderr",
|
| 29 |
+
"output_type": "stream",
|
| 30 |
+
"text": [
|
| 31 |
+
"/usr/lib/python3/dist-packages/sklearn/utils/fixes.py:25: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
|
| 32 |
+
" from pkg_resources import parse_version # type: ignore\n",
|
| 33 |
+
"2025-11-22 18:13:10.673389: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
|
| 34 |
+
"2025-11-22 18:13:10.687858: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
| 35 |
+
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
|
| 36 |
+
"E0000 00:00:1763835190.705243 2236633 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
| 37 |
+
"E0000 00:00:1763835190.710795 2236633 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
| 38 |
+
"W0000 00:00:1763835190.724588 2236633 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
|
| 39 |
+
"W0000 00:00:1763835190.724603 2236633 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
|
| 40 |
+
"W0000 00:00:1763835190.724605 2236633 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
|
| 41 |
+
"W0000 00:00:1763835190.724607 2236633 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
|
| 42 |
+
"2025-11-22 18:13:10.729261: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
| 43 |
+
"To enable the following instructions: AVX512F AVX512_VNNI AVX512_BF16 AVX512_FP16 AVX_VNNI, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"ename": "AttributeError",
|
| 48 |
+
"evalue": "'MessageFactory' object has no attribute 'GetPrototype'",
|
| 49 |
+
"output_type": "error",
|
| 50 |
+
"traceback": [
|
| 51 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 52 |
+
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
| 53 |
+
"\u001b[0;31mAttributeError\u001b[0m: 'MessageFactory' object has no attribute 'GetPrototype'"
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"ename": "AttributeError",
|
| 58 |
+
"evalue": "'MessageFactory' object has no attribute 'GetPrototype'",
|
| 59 |
+
"output_type": "error",
|
| 60 |
+
"traceback": [
|
| 61 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 62 |
+
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
| 63 |
+
"\u001b[0;31mAttributeError\u001b[0m: 'MessageFactory' object has no attribute 'GetPrototype'"
|
| 64 |
+
]
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"ename": "AttributeError",
|
| 68 |
+
"evalue": "'MessageFactory' object has no attribute 'GetPrototype'",
|
| 69 |
+
"output_type": "error",
|
| 70 |
+
"traceback": [
|
| 71 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 72 |
+
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
| 73 |
+
"\u001b[0;31mAttributeError\u001b[0m: 'MessageFactory' object has no attribute 'GetPrototype'"
|
| 74 |
+
]
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"name": "stderr",
|
| 78 |
+
"output_type": "stream",
|
| 79 |
+
"text": [
|
| 80 |
+
"/home/ubuntu/.local/lib/python3.10/site-packages/google/api_core/_python_version_support.py:266: FutureWarning: You are using a Python version (3.10.12) which Google will stop supporting in new releases of google.api_core once it reaches its end of life (2026-10-04). Please upgrade to the latest Python version, or at least Python 3.11, to continue receiving updates for google.api_core past that date.\n",
|
| 81 |
+
" warnings.warn(message, FutureWarning)\n"
|
| 82 |
+
]
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"ename": "AttributeError",
|
| 86 |
+
"evalue": "'MessageFactory' object has no attribute 'GetPrototype'",
|
| 87 |
+
"output_type": "error",
|
| 88 |
+
"traceback": [
|
| 89 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 90 |
+
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
| 91 |
+
"\u001b[0;31mAttributeError\u001b[0m: 'MessageFactory' object has no attribute 'GetPrototype'"
|
| 92 |
+
]
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"ename": "AttributeError",
|
| 96 |
+
"evalue": "'MessageFactory' object has no attribute 'GetPrototype'",
|
| 97 |
+
"output_type": "error",
|
| 98 |
+
"traceback": [
|
| 99 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 100 |
+
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
| 101 |
+
"\u001b[0;31mAttributeError\u001b[0m: 'MessageFactory' object has no attribute 'GetPrototype'"
|
| 102 |
+
]
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"name": "stderr",
|
| 106 |
+
"output_type": "stream",
|
| 107 |
+
"text": [
|
| 108 |
+
"Skipping import of cpp extensions due to incompatible torch version 2.9.1+cu128 for torchao version 0.14.1 Please see https://github.com/pytorch/ao/issues/2919 for more info\n",
|
| 109 |
+
"TMA benchmarks will be running without grid constant TMA descriptor.\n",
|
| 110 |
+
"WARNING:bitsandbytes.cextension:Could not find the bitsandbytes CUDA binary at PosixPath('/usr/local/lib/python3.10/dist-packages/bitsandbytes/libbitsandbytes_cuda128.so')\n",
|
| 111 |
+
"ERROR:bitsandbytes.cextension:Could not load bitsandbytes native library: /lib/x86_64-linux-gnu/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /usr/local/lib/python3.10/dist-packages/bitsandbytes/libbitsandbytes_cpu.so)\n",
|
| 112 |
+
"Traceback (most recent call last):\n",
|
| 113 |
+
" File \"/usr/local/lib/python3.10/dist-packages/bitsandbytes/cextension.py\", line 85, in <module>\n",
|
| 114 |
+
" lib = get_native_library()\n",
|
| 115 |
+
" File \"/usr/local/lib/python3.10/dist-packages/bitsandbytes/cextension.py\", line 72, in get_native_library\n",
|
| 116 |
+
" dll = ct.cdll.LoadLibrary(str(binary_path))\n",
|
| 117 |
+
" File \"/usr/lib/python3.10/ctypes/__init__.py\", line 452, in LoadLibrary\n",
|
| 118 |
+
" return self._dlltype(name)\n",
|
| 119 |
+
" File \"/usr/lib/python3.10/ctypes/__init__.py\", line 374, in __init__\n",
|
| 120 |
+
" self._handle = _dlopen(self._name, mode)\n",
|
| 121 |
+
"OSError: /lib/x86_64-linux-gnu/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /usr/local/lib/python3.10/dist-packages/bitsandbytes/libbitsandbytes_cpu.so)\n",
|
| 122 |
+
"WARNING:bitsandbytes.cextension:\n",
|
| 123 |
+
"CUDA Setup failed despite CUDA being available. Please run the following command to get more information:\n",
|
| 124 |
+
"\n",
|
| 125 |
+
"python -m bitsandbytes\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"Inspect the output of the command and see if you can locate CUDA libraries. You might need to add them\n",
|
| 128 |
+
"to your LD_LIBRARY_PATH. If you suspect a bug, please take the information from python -m bitsandbytes\n",
|
| 129 |
+
"and open an issue at: https://github.com/bitsandbytes-foundation/bitsandbytes/issues\n",
|
| 130 |
+
"\n"
|
| 131 |
+
]
|
| 132 |
+
}
|
| 133 |
+
],
|
| 134 |
+
"source": [
|
| 135 |
+
"import os\n",
|
| 136 |
+
"import subprocess\n",
|
| 137 |
+
"from pathlib import Path\n",
|
| 138 |
+
"import argparse\n",
|
| 139 |
+
"\n",
|
| 140 |
+
"from ruamel.yaml import YAML\n",
|
| 141 |
+
"import diffusers\n",
|
| 142 |
+
"\n",
|
| 143 |
+
"\n",
|
| 144 |
+
"from wandml.trainers.experiment_trainer import ExperimentTrainer\n",
|
| 145 |
+
"from wandml import WandDataPipe\n",
|
| 146 |
+
"import wandml\n",
|
| 147 |
+
"\n",
|
| 148 |
+
"from qwenimage.finetuner import QwenLoraFinetuner\n"
|
| 149 |
+
]
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"cell_type": "code",
|
| 153 |
+
"execution_count": null,
|
| 154 |
+
"id": "b7b70d58",
|
| 155 |
+
"metadata": {},
|
| 156 |
+
"outputs": [],
|
| 157 |
+
"source": []
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"cell_type": "code",
|
| 161 |
+
"execution_count": 3,
|
| 162 |
+
"id": "ba2e8778",
|
| 163 |
+
"metadata": {},
|
| 164 |
+
"outputs": [],
|
| 165 |
+
"source": [
|
| 166 |
+
"\n",
|
| 167 |
+
"\n",
|
| 168 |
+
"from qwenimage.datasets import StyleSource\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"\n",
|
| 171 |
+
"src = StyleSource(\"/data/styles-finetune-data-artistic/tarot\", \"<0001>\")"
|
| 172 |
+
]
|
| 173 |
+
},
|
| 174 |
+
{
|
| 175 |
+
"cell_type": "code",
|
| 176 |
+
"execution_count": 4,
|
| 177 |
+
"id": "eda50bdf",
|
| 178 |
+
"metadata": {},
|
| 179 |
+
"outputs": [],
|
| 180 |
+
"source": [
|
| 181 |
+
"from wandml.data.tasks.text_to_image import TextToImageTask\n",
|
| 182 |
+
"\n",
|
| 183 |
+
"task = TextToImageTask()"
|
| 184 |
+
]
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"cell_type": "code",
|
| 188 |
+
"execution_count": 5,
|
| 189 |
+
"metadata": {},
|
| 190 |
+
"outputs": [
|
| 191 |
+
{
|
| 192 |
+
"name": "stderr",
|
| 193 |
+
"output_type": "stream",
|
| 194 |
+
"text": [
|
| 195 |
+
"/home/ubuntu/wand-ml/wandml/core/source.py:14: UserWarning: Deprecated: Use data_types instead of _data_types\n",
|
| 196 |
+
" warnings.warn(\"Deprecated: Use data_types instead of _data_types\")\n"
|
| 197 |
+
]
|
| 198 |
+
}
|
| 199 |
+
],
|
| 200 |
+
"source": [
|
| 201 |
+
"dp = WandDataPipe()\n",
|
| 202 |
+
"dp.add_source(src)\n",
|
| 203 |
+
"dp.set_task(task)"
|
| 204 |
+
]
|
| 205 |
+
},
|
| 206 |
+
{
|
| 207 |
+
"cell_type": "code",
|
| 208 |
+
"execution_count": 6,
|
| 209 |
+
"id": "b98b9368",
|
| 210 |
+
"metadata": {},
|
| 211 |
+
"outputs": [
|
| 212 |
+
{
|
| 213 |
+
"data": {
|
| 214 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 215 |
+
"model_id": "c4aecbbe70e8441c8f7f7a15ff5a95f6",
|
| 216 |
+
"version_major": 2,
|
| 217 |
+
"version_minor": 0
|
| 218 |
+
},
|
| 219 |
+
"text/plain": [
|
| 220 |
+
"Fetching 7 files: 0%| | 0/7 [00:00<?, ?it/s]"
|
| 221 |
+
]
|
| 222 |
+
},
|
| 223 |
+
"metadata": {},
|
| 224 |
+
"output_type": "display_data"
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"name": "stdout",
|
| 228 |
+
"output_type": "stream",
|
| 229 |
+
"text": [
|
| 230 |
+
"self.device='cuda'\n"
|
| 231 |
+
]
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"data": {
|
| 235 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 236 |
+
"model_id": "94340bbd1c674a88ba287f7154815d6b",
|
| 237 |
+
"version_major": 2,
|
| 238 |
+
"version_minor": 0
|
| 239 |
+
},
|
| 240 |
+
"text/plain": [
|
| 241 |
+
"Fetching 5 files: 0%| | 0/5 [00:00<?, ?it/s]"
|
| 242 |
+
]
|
| 243 |
+
},
|
| 244 |
+
"metadata": {},
|
| 245 |
+
"output_type": "display_data"
|
| 246 |
+
},
|
| 247 |
+
{
|
| 248 |
+
"data": {
|
| 249 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 250 |
+
"model_id": "44febcb836804a969fd7c2571f7830be",
|
| 251 |
+
"version_major": 2,
|
| 252 |
+
"version_minor": 0
|
| 253 |
+
},
|
| 254 |
+
"text/plain": [
|
| 255 |
+
"Loading checkpoint shards: 0%| | 0/5 [00:00<?, ?it/s]"
|
| 256 |
+
]
|
| 257 |
+
},
|
| 258 |
+
"metadata": {},
|
| 259 |
+
"output_type": "display_data"
|
| 260 |
+
},
|
| 261 |
+
{
|
| 262 |
+
"data": {
|
| 263 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 264 |
+
"model_id": "379bfa34f1cb46ef9aa6c06b94a5437f",
|
| 265 |
+
"version_major": 2,
|
| 266 |
+
"version_minor": 0
|
| 267 |
+
},
|
| 268 |
+
"text/plain": [
|
| 269 |
+
"Loading pipeline components...: 0%| | 0/6 [00:00<?, ?it/s]"
|
| 270 |
+
]
|
| 271 |
+
},
|
| 272 |
+
"metadata": {},
|
| 273 |
+
"output_type": "display_data"
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"name": "stderr",
|
| 277 |
+
"output_type": "stream",
|
| 278 |
+
"text": [
|
| 279 |
+
"`torch_dtype` is deprecated! Use `dtype` instead!\n"
|
| 280 |
+
]
|
| 281 |
+
},
|
| 282 |
+
{
|
| 283 |
+
"data": {
|
| 284 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 285 |
+
"model_id": "963f6022ee8c46ce9d36a02aad4bc739",
|
| 286 |
+
"version_major": 2,
|
| 287 |
+
"version_minor": 0
|
| 288 |
+
},
|
| 289 |
+
"text/plain": [
|
| 290 |
+
"Loading checkpoint shards: 0%| | 0/4 [00:00<?, ?it/s]"
|
| 291 |
+
]
|
| 292 |
+
},
|
| 293 |
+
"metadata": {},
|
| 294 |
+
"output_type": "display_data"
|
| 295 |
+
}
|
| 296 |
+
],
|
| 297 |
+
"source": [
|
| 298 |
+
"from qwenimage.datamodels import QwenConfig\n",
|
| 299 |
+
"from qwenimage.foundation import QwenImageFoundation\n",
|
| 300 |
+
"\n",
|
| 301 |
+
"config = QwenConfig()\n",
|
| 302 |
+
"foundation = QwenImageFoundation(config=config)"
|
| 303 |
+
]
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"cell_type": "code",
|
| 307 |
+
"execution_count": 7,
|
| 308 |
+
"id": "7646e8ce",
|
| 309 |
+
"metadata": {},
|
| 310 |
+
"outputs": [
|
| 311 |
+
{
|
| 312 |
+
"name": "stdout",
|
| 313 |
+
"output_type": "stream",
|
| 314 |
+
"text": [
|
| 315 |
+
"Loading Lora from None\n"
|
| 316 |
+
]
|
| 317 |
+
}
|
| 318 |
+
],
|
| 319 |
+
"source": [
|
| 320 |
+
"finetuner = QwenLoraFinetuner(foundation, config)\n",
|
| 321 |
+
"finetuner.load(None)"
|
| 322 |
+
]
|
| 323 |
+
},
|
| 324 |
+
{
|
| 325 |
+
"cell_type": "code",
|
| 326 |
+
"execution_count": 8,
|
| 327 |
+
"id": "47bcba68",
|
| 328 |
+
"metadata": {},
|
| 329 |
+
"outputs": [
|
| 330 |
+
{
|
| 331 |
+
"name": "stdout",
|
| 332 |
+
"output_type": "stream",
|
| 333 |
+
"text": [
|
| 334 |
+
"foundation=<FoundationEnum.FLUX: 'flux'> instance_data_dir=None class_data_dir=None instance_prompt=None class_prompt=None num_class_images=10 output_dir='output' seed=None size=1024 center_crop=False train_batch_size=1 num_train_epochs=1 max_train_steps=None save_steps=1000 save_path=None gradient_accumulation_steps=1 learning_rate=0.001 learning_rate_1d=1e-06 scale_lr=False lr_scheduler='constant' lr_warmup_steps=0 base_lr=1e-05 max_lr=0.001 step_size_up=2000 cyclic_lr_mode=<CyclicLRMode.TRIANGULAR2: 'triangular2'> cyclic_lr_cycle_momentum=False optim=<OptimizerType.ADAMW: 'adamw'> adam_beta1=0.9 adam_beta2=0.999 adam_weight_decay=0.01 adam_epsilon=1e-08 max_grad_norm=1.0 mixed_precision='bf16' concepts_list=None modifier_tokens=None initializer_tokens=None checkpointing_steps=9999 resume_from_checkpoint=None train_text_encoder=True gcs_bucket=None topic_id='finetune-complete' concepts=None global_step=0 prior_loss_weight=1.0 wand_user_id='test' wand_model_id='testing' wand_model_bucket='wand-finetune' wand_project_name='wand-finetune' num_sample_images=5 prodigy_beta3=None prodigy_decouple=True prodigy_use_bias_correction=False prodigy_safeguard_warmup=False base_cache_dir=PosixPath('/data/wand_cache') num_validation_images=30 log_batch_steps=100 run_name=None record_training=True validation_steps=500 train_sigma_distribution='linear' inference_sigma_distribution='shift' quantize=False gradient_checkpointing=False compile=False lora_map_save_params=False log_model_steps=None resume_optimizer=False sample_steps=500 upload_optimizer=False early_stop=False preprocessing_epoch_len=128 train_regional=False preprocessing_epoch_repetitions=1 lora_rank=16 ema=False composite_reference=False train_color_fix=False num_workers=None wandb_entity='wand-tech' warmup_start_lr=0.0 lr_T_mult=1 lr_T_0=None logger_service='wandb' clearml_task_type='training' load_multi_view_lora=False train_max_sequence_length=512 train_dist='linear' train_shift=True inference_dist='linear' inference_shift=True static_mu=None loss_weight_dist=None\n"
|
| 335 |
+
]
|
| 336 |
+
}
|
| 337 |
+
],
|
| 338 |
+
"source": [
|
| 339 |
+
"trainer = ExperimentTrainer(foundation,dp,config)"
|
| 340 |
+
]
|
| 341 |
+
},
|
| 342 |
+
{
|
| 343 |
+
"cell_type": "code",
|
| 344 |
+
"execution_count": 9,
|
| 345 |
+
"id": "d92855c1",
|
| 346 |
+
"metadata": {},
|
| 347 |
+
"outputs": [
|
| 348 |
+
{
|
| 349 |
+
"name": "stderr",
|
| 350 |
+
"output_type": "stream",
|
| 351 |
+
"text": [
|
| 352 |
+
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33meleazhong\u001b[0m to \u001b[32mhttps://api.wandb.ai\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
|
| 353 |
+
]
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"name": "stdout",
|
| 357 |
+
"output_type": "stream",
|
| 358 |
+
"text": [
|
| 359 |
+
"wandb.init called with:\n",
|
| 360 |
+
" project: wand-finetune\n",
|
| 361 |
+
" entity: wand-tech\n",
|
| 362 |
+
" name: None\n",
|
| 363 |
+
" config: {'foundation': <FoundationEnum.FLUX: 'flux'>, 'instance_data_dir': None, 'class_data_dir': None, 'instance_prompt': None, 'class_prompt': None, 'num_class_images': 10, 'output_dir': 'output', 'seed': None, 'size': 1024, 'center_crop': False, 'train_batch_size': 1, 'num_train_epochs': 1, 'max_train_steps': None, 'save_steps': 1000, 'save_path': None, 'gradient_accumulation_steps': 1, 'learning_rate': 0.001, 'learning_rate_1d': 1e-06, 'scale_lr': False, 'lr_scheduler': 'constant', 'lr_warmup_steps': 0, 'base_lr': 1e-05, 'max_lr': 0.001, 'step_size_up': 2000, 'cyclic_lr_mode': <CyclicLRMode.TRIANGULAR2: 'triangular2'>, 'cyclic_lr_cycle_momentum': False, 'optim': <OptimizerType.ADAMW: 'adamw'>, 'adam_beta1': 0.9, 'adam_beta2': 0.999, 'adam_weight_decay': 0.01, 'adam_epsilon': 1e-08, 'max_grad_norm': 1.0, 'mixed_precision': 'bf16', 'concepts_list': None, 'modifier_tokens': None, 'initializer_tokens': None, 'checkpointing_steps': 9999, 'resume_from_checkpoint': None, 'train_text_encoder': True, 'gcs_bucket': None, 'topic_id': 'finetune-complete', 'concepts': None, 'global_step': 0, 'prior_loss_weight': 1.0, 'wand_user_id': 'test', 'wand_model_id': 'testing', 'wand_model_bucket': 'wand-finetune', 'wand_project_name': 'wand-finetune', 'num_sample_images': 5, 'prodigy_beta3': None, 'prodigy_decouple': True, 'prodigy_use_bias_correction': False, 'prodigy_safeguard_warmup': False, 'base_cache_dir': PosixPath('/data/wand_cache'), 'num_validation_images': 30, 'log_batch_steps': 100, 'run_name': None, 'record_training': True, 'validation_steps': 500, 'train_sigma_distribution': 'linear', 'inference_sigma_distribution': 'shift', 'quantize': False, 'gradient_checkpointing': False, 'compile': False, 'lora_map_save_params': False, 'log_model_steps': None, 'resume_optimizer': False, 'sample_steps': 500, 'upload_optimizer': False, 'early_stop': False, 'preprocessing_epoch_len': 128, 'train_regional': False, 'preprocessing_epoch_repetitions': 1, 'lora_rank': 16, 'ema': False, 'composite_reference': False, 'train_color_fix': False, 'num_workers': None, 'wandb_entity': 'wand-tech', 'warmup_start_lr': 0.0, 'lr_T_mult': 1, 'lr_T_0': None, 'logger_service': 'wandb', 'clearml_task_type': 'training', 'load_multi_view_lora': False, 'train_max_sequence_length': 512, 'train_dist': 'linear', 'train_shift': True, 'inference_dist': 'linear', 'inference_shift': True, 'static_mu': None, 'loss_weight_dist': None}\n",
|
| 364 |
+
" tags: None\n",
|
| 365 |
+
" kwargs: {'save_code': True}\n"
|
| 366 |
+
]
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"data": {
|
| 370 |
+
"text/html": [],
|
| 371 |
+
"text/plain": [
|
| 372 |
+
"<IPython.core.display.HTML object>"
|
| 373 |
+
]
|
| 374 |
+
},
|
| 375 |
+
"metadata": {},
|
| 376 |
+
"output_type": "display_data"
|
| 377 |
+
},
|
| 378 |
+
{
|
| 379 |
+
"data": {
|
| 380 |
+
"text/html": [
|
| 381 |
+
"Tracking run with wandb version 0.23.0"
|
| 382 |
+
],
|
| 383 |
+
"text/plain": [
|
| 384 |
+
"<IPython.core.display.HTML object>"
|
| 385 |
+
]
|
| 386 |
+
},
|
| 387 |
+
"metadata": {},
|
| 388 |
+
"output_type": "display_data"
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"data": {
|
| 392 |
+
"text/html": [
|
| 393 |
+
"Run data is saved locally in <code>/home/ubuntu/Qwen-Image-Edit-Angles/wandb/run-20251122_181330-lg6f3z2h</code>"
|
| 394 |
+
],
|
| 395 |
+
"text/plain": [
|
| 396 |
+
"<IPython.core.display.HTML object>"
|
| 397 |
+
]
|
| 398 |
+
},
|
| 399 |
+
"metadata": {},
|
| 400 |
+
"output_type": "display_data"
|
| 401 |
+
},
|
| 402 |
+
{
|
| 403 |
+
"data": {
|
| 404 |
+
"text/html": [
|
| 405 |
+
"Syncing run <strong><a href='https://wandb.ai/wand-tech/wand-finetune/runs/lg6f3z2h' target=\"_blank\">graceful-galaxy-731</a></strong> to <a href='https://wandb.ai/wand-tech/wand-finetune' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/developer-guide' target=\"_blank\">docs</a>)<br>"
|
| 406 |
+
],
|
| 407 |
+
"text/plain": [
|
| 408 |
+
"<IPython.core.display.HTML object>"
|
| 409 |
+
]
|
| 410 |
+
},
|
| 411 |
+
"metadata": {},
|
| 412 |
+
"output_type": "display_data"
|
| 413 |
+
},
|
| 414 |
+
{
|
| 415 |
+
"data": {
|
| 416 |
+
"text/html": [
|
| 417 |
+
" View project at <a href='https://wandb.ai/wand-tech/wand-finetune' target=\"_blank\">https://wandb.ai/wand-tech/wand-finetune</a>"
|
| 418 |
+
],
|
| 419 |
+
"text/plain": [
|
| 420 |
+
"<IPython.core.display.HTML object>"
|
| 421 |
+
]
|
| 422 |
+
},
|
| 423 |
+
"metadata": {},
|
| 424 |
+
"output_type": "display_data"
|
| 425 |
+
},
|
| 426 |
+
{
|
| 427 |
+
"data": {
|
| 428 |
+
"text/html": [
|
| 429 |
+
" View run at <a href='https://wandb.ai/wand-tech/wand-finetune/runs/lg6f3z2h' target=\"_blank\">https://wandb.ai/wand-tech/wand-finetune/runs/lg6f3z2h</a>"
|
| 430 |
+
],
|
| 431 |
+
"text/plain": [
|
| 432 |
+
"<IPython.core.display.HTML object>"
|
| 433 |
+
]
|
| 434 |
+
},
|
| 435 |
+
"metadata": {},
|
| 436 |
+
"output_type": "display_data"
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"name": "stdout",
|
| 440 |
+
"output_type": "stream",
|
| 441 |
+
"text": [
|
| 442 |
+
"Using suggested max workers 26\n"
|
| 443 |
+
]
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"name": "stderr",
|
| 447 |
+
"output_type": "stream",
|
| 448 |
+
"text": [
|
| 449 |
+
"Train: 0%| | 0/6 [00:00<?, ?it/s]"
|
| 450 |
+
]
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"name": "stdout",
|
| 454 |
+
"output_type": "stream",
|
| 455 |
+
"text": [
|
| 456 |
+
"Memory allocated: 55297.20 MB\n",
|
| 457 |
+
"Memory reserved: 55616.00 MB\n",
|
| 458 |
+
"Total memory: 81089.88 MB\n"
|
| 459 |
+
]
|
| 460 |
+
},
|
| 461 |
+
{
|
| 462 |
+
"name": "stderr",
|
| 463 |
+
"output_type": "stream",
|
| 464 |
+
"text": [
|
| 465 |
+
"Preprocess Batch: 100%|██████████| 128/128 [00:16<00:00, 7.73it/s]\n"
|
| 466 |
+
]
|
| 467 |
+
},
|
| 468 |
+
{
|
| 469 |
+
"name": "stdout",
|
| 470 |
+
"output_type": "stream",
|
| 471 |
+
"text": [
|
| 472 |
+
"Memory allocated: 56371.81 MB\n",
|
| 473 |
+
"Memory reserved: 56676.00 MB\n",
|
| 474 |
+
"Total memory: 81089.88 MB\n",
|
| 475 |
+
"Repetition: 0\n"
|
| 476 |
+
]
|
| 477 |
+
},
|
| 478 |
+
{
|
| 479 |
+
"ename": "RuntimeError",
|
| 480 |
+
"evalue": "Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!",
|
| 481 |
+
"output_type": "error",
|
| 482 |
+
"traceback": [
|
| 483 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 484 |
+
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
|
| 485 |
+
"\u001b[0;32m/tmp/ipykernel_2236633/4032920361.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
| 486 |
+
"\u001b[0;32m~/wand-ml/wandml/utils/debug.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mwrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mDEBUG\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mstart_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mperf_counter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 487 |
+
"\u001b[0;32m~/wand-ml/wandml/trainers/experiment_trainer.py\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 295\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"epoch\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mepoch\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 296\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"split\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"train\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 297\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msingle_step\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 298\u001b[0m \u001b[0mbatch_num\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 299\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mglobal_step\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 488 |
+
"\u001b[0;32m~/wand-ml/wandml/trainers/experiment_trainer.py\u001b[0m in \u001b[0;36msingle_step\u001b[0;34m(self, batch)\u001b[0m\n\u001b[1;32m 334\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0maccelerator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maccumulate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 335\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0maccelerator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mautocast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 336\u001b[0;31m \u001b[0mloss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msingle_step\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 337\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mctimed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"accelerator.backward(loss)\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 338\u001b[0m \u001b[0maccelerator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mloss\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 489 |
+
"\u001b[0;32m~/wand-ml/wandml/core/hooks.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmanager\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_pre_hooks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 15\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmanager\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_post_hooks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 490 |
+
"\u001b[0;32m~/Qwen-Image-Edit-Angles/qwenimage/foundation.py\u001b[0m in \u001b[0;36msingle_step\u001b[0;34m(self, batch)\u001b[0m\n\u001b[1;32m 190\u001b[0m \u001b[0mbatch_size\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mx_0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 191\u001b[0m \u001b[0mt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtimestep_dist_utils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_train_t\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbatch_size\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mseq_len\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mseq_len\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 192\u001b[0;31m \u001b[0mx_t\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1.0\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mx_0\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mt\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mx_1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 193\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 194\u001b[0m \u001b[0ml_channels\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransformer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0min_channels\u001b[0m \u001b[0;34m//\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 491 |
+
"\u001b[0;31mRuntimeError\u001b[0m: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!"
|
| 492 |
+
]
|
| 493 |
+
}
|
| 494 |
+
],
|
| 495 |
+
"source": [
|
| 496 |
+
"trainer.train()"
|
| 497 |
+
]
|
| 498 |
+
},
|
| 499 |
+
{
|
| 500 |
+
"cell_type": "code",
|
| 501 |
+
"execution_count": null,
|
| 502 |
+
"id": "0eea7b23",
|
| 503 |
+
"metadata": {},
|
| 504 |
+
"outputs": [],
|
| 505 |
+
"source": []
|
| 506 |
+
}
|
| 507 |
+
],
|
| 508 |
+
"metadata": {
|
| 509 |
+
"kernelspec": {
|
| 510 |
+
"display_name": "Python 3",
|
| 511 |
+
"language": "python",
|
| 512 |
+
"name": "python3"
|
| 513 |
+
},
|
| 514 |
+
"language_info": {
|
| 515 |
+
"codemirror_mode": {
|
| 516 |
+
"name": "ipython",
|
| 517 |
+
"version": 3
|
| 518 |
+
},
|
| 519 |
+
"file_extension": ".py",
|
| 520 |
+
"mimetype": "text/x-python",
|
| 521 |
+
"name": "python",
|
| 522 |
+
"nbconvert_exporter": "python",
|
| 523 |
+
"pygments_lexer": "ipython3",
|
| 524 |
+
"version": "3.10.12"
|
| 525 |
+
}
|
| 526 |
+
},
|
| 527 |
+
"nbformat": 4,
|
| 528 |
+
"nbformat_minor": 5
|
| 529 |
+
}
|
scripts/train.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# # %%
|
| 2 |
+
# %cd /home/ubuntu/Qwen-Image-Edit-Angles
|
| 3 |
+
|
| 4 |
+
# %%
|
| 5 |
+
import os
|
| 6 |
+
import subprocess
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
import argparse
|
| 9 |
+
|
| 10 |
+
from ruamel.yaml import YAML
|
| 11 |
+
import diffusers
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
from wandml.trainers.experiment_trainer import ExperimentTrainer
|
| 15 |
+
from wandml import WandDataPipe
|
| 16 |
+
import wandml
|
| 17 |
+
|
| 18 |
+
from qwenimage.finetuner import QwenLoraFinetuner
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# %%
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# %%
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
from qwenimage.datasets import StyleSourceWithRandomRef
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
src = StyleSourceWithRandomRef("/data/styles-finetune-data-artistic/tarot", "<0001>", "/data/image", set_len=1000)
|
| 31 |
+
|
| 32 |
+
# %%
|
| 33 |
+
from qwenimage.task import TextToImageWithRefTask
|
| 34 |
+
|
| 35 |
+
task = TextToImageWithRefTask()
|
| 36 |
+
|
| 37 |
+
# %%
|
| 38 |
+
dp = WandDataPipe()
|
| 39 |
+
dp.add_source(src)
|
| 40 |
+
dp.set_task(task)
|
| 41 |
+
|
| 42 |
+
# %%
|
| 43 |
+
from qwenimage.datamodels import QwenConfig
|
| 44 |
+
from qwenimage.foundation import QwenImageFoundation
|
| 45 |
+
|
| 46 |
+
config = QwenConfig(
|
| 47 |
+
# preprocessing_epoch_len=0,
|
| 48 |
+
)
|
| 49 |
+
foundation = QwenImageFoundation(config=config)
|
| 50 |
+
|
| 51 |
+
# %%
|
| 52 |
+
finetuner = QwenLoraFinetuner(foundation, config)
|
| 53 |
+
finetuner.load(None)
|
| 54 |
+
|
| 55 |
+
# %%
|
| 56 |
+
trainer = ExperimentTrainer(foundation,dp,config)
|
| 57 |
+
|
| 58 |
+
# %%
|
| 59 |
+
trainer.train()
|
| 60 |
+
|
| 61 |
+
# %%
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|