Spaces:
Running
on
Zero
Running
on
Zero
Elea Zhong
commited on
Commit
·
87c9ae9
1
Parent(s):
65e075c
run experiments
Browse files- app.py +5 -43
- qwenimage/experiments/experiments_qwen.py +33 -17
- qwenimage/models/pipeline_qwenimage_edit_plus.py +14 -10
- qwenimage/optimization.py +1 -1
- scripts/plot_data.ipynb +0 -0
- scripts/run_experiment.py +26 -12
- scripts/run_experiment_modal.py +0 -21
- scripts/run_multi.py +32 -0
- scripts/run_multi_experiments.py +0 -87
app.py
CHANGED
|
@@ -18,6 +18,7 @@ from torchao.quantization import quantize_
|
|
| 18 |
from torchao.quantization import Int8WeightOnlyConfig
|
| 19 |
|
| 20 |
from qwenimage.debug import ftimed
|
|
|
|
| 21 |
from qwenimage.optimization import optimize_pipeline_
|
| 22 |
from qwenimage.prompt import build_camera_prompt
|
| 23 |
from qwenimage.models.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
|
|
@@ -28,49 +29,10 @@ from qwenimage.models.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
|
|
| 28 |
dtype = torch.bfloat16
|
| 29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
device_map='cuda'),torch_dtype=dtype).to(device)
|
| 36 |
-
|
| 37 |
-
pipe.load_lora_weights(
|
| 38 |
-
"dx8152/Qwen-Edit-2509-Multiple-angles",
|
| 39 |
-
weight_name="镜头转换.safetensors", adapter_name="angles"
|
| 40 |
-
)
|
| 41 |
-
|
| 42 |
-
# pipe.load_lora_weights(
|
| 43 |
-
# "lovis93/next-scene-qwen-image-lora-2509",
|
| 44 |
-
# weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene"
|
| 45 |
-
# )
|
| 46 |
-
pipe.set_adapters(["angles"], adapter_weights=[1.])
|
| 47 |
-
pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.25)
|
| 48 |
-
# pipe.fuse_lora(adapter_names=["next-scene"], lora_scale=1.)
|
| 49 |
-
pipe.unload_lora_weights()
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 53 |
-
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 54 |
-
|
| 55 |
-
# transformer_clone = copy.deepcopy(pipe.transformer)
|
| 56 |
-
|
| 57 |
-
# quantize_(pipe.transformer, Int8WeightOnlyConfig())
|
| 58 |
-
# torch.save(pipe.transformer.state_dict(), "transformer_int8.pt")
|
| 59 |
-
# assert False
|
| 60 |
-
|
| 61 |
-
# from torchao.quantization import Int8DynamicActivationInt4WeightConfig
|
| 62 |
-
# quantize_(pipe.transformer, Int8DynamicActivationInt4WeightConfig())
|
| 63 |
-
|
| 64 |
-
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024))], prompt="prompt", height=1024, width=1024, num_inference_steps=4)
|
| 65 |
-
|
| 66 |
-
# state_dict = torch.load("transformer_int8.pt")
|
| 67 |
-
# print(state_dict.keys())
|
| 68 |
-
# # state_dict = pipe.transformer.state_dict()
|
| 69 |
-
# print(pipe.transformer.state_dict().keys())
|
| 70 |
-
# zerogpu_weights = ZeroGPUWeights({name: weight for name, weight in state_dict.items()})
|
| 71 |
-
# compiled_transformer = ZeroGPUCompiledModel("transformer.pt2", zerogpu_weights)
|
| 72 |
-
|
| 73 |
-
# spaces.aoti_apply(compiled_transformer, pipe.transformer)
|
| 74 |
|
| 75 |
|
| 76 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 18 |
from torchao.quantization import Int8WeightOnlyConfig
|
| 19 |
|
| 20 |
from qwenimage.debug import ftimed
|
| 21 |
+
from qwenimage.experiments.experiments_qwen import Qwen_FA3_AoT_int8, Qwen_int4
|
| 22 |
from qwenimage.optimization import optimize_pipeline_
|
| 23 |
from qwenimage.prompt import build_camera_prompt
|
| 24 |
from qwenimage.models.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
|
|
|
|
| 29 |
dtype = torch.bfloat16
|
| 30 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
|
| 32 |
+
exp = Qwen_FA3_AoT_int8()
|
| 33 |
+
exp.load()
|
| 34 |
+
exp.optimize()
|
| 35 |
+
pipe = exp.pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
MAX_SEED = np.iinfo(np.int32).max
|
qwenimage/experiments/experiments_qwen.py
CHANGED
|
@@ -4,16 +4,26 @@ import os
|
|
| 4 |
from pathlib import Path
|
| 5 |
import random
|
| 6 |
import statistics
|
|
|
|
|
|
|
| 7 |
import torch
|
| 8 |
from PIL import Image
|
| 9 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
|
|
|
| 11 |
from qwenimage.models.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
|
| 12 |
from qwenimage.models.transformer_qwenimage import QwenImageTransformer2DModel
|
| 13 |
from qwenimage.models.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
|
| 14 |
from qwenimage.experiment import AbstractExperiment, ExperimentConfig
|
| 15 |
from qwenimage.debug import ProfileSession, ftimed
|
| 16 |
-
from qwenimage.optimization import optimize_pipeline_
|
| 17 |
from qwenimage.prompt import build_camera_prompt
|
| 18 |
|
| 19 |
|
|
@@ -124,9 +134,6 @@ class QwenBaseExperiment(AbstractExperiment):
|
|
| 124 |
|
| 125 |
@ftimed
|
| 126 |
def optimize(self):
|
| 127 |
-
# pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 128 |
-
# pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 129 |
-
# optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024))], prompt="prompt", height=1024, width=1024, num_inference_steps=4)
|
| 130 |
pass
|
| 131 |
|
| 132 |
@ftimed
|
|
@@ -181,7 +188,7 @@ class Qwen_FA3(QwenBaseExperiment):
|
|
| 181 |
class Qwen_AoT(QwenBaseExperiment):
|
| 182 |
@ftimed
|
| 183 |
def optimize(self):
|
| 184 |
-
|
| 185 |
self.pipe,
|
| 186 |
cache_compiled=self.config.cache_compiled,
|
| 187 |
quantize=False,
|
|
@@ -191,10 +198,7 @@ class Qwen_AoT(QwenBaseExperiment):
|
|
| 191 |
"num_inference_steps":4
|
| 192 |
}
|
| 193 |
)
|
| 194 |
-
|
| 195 |
-
def cleanup(self):
|
| 196 |
-
super().cleanup()
|
| 197 |
-
del self.compiled_transformer
|
| 198 |
|
| 199 |
@ExperimentRegistry.register(name="qwen_fa3_aot")
|
| 200 |
class Qwen_FA3_AoT(QwenBaseExperiment):
|
|
@@ -202,7 +206,7 @@ class Qwen_FA3_AoT(QwenBaseExperiment):
|
|
| 202 |
def optimize(self):
|
| 203 |
self.pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 204 |
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 205 |
-
|
| 206 |
self.pipe,
|
| 207 |
cache_compiled=self.config.cache_compiled,
|
| 208 |
quantize=False,
|
|
@@ -214,9 +218,6 @@ class Qwen_FA3_AoT(QwenBaseExperiment):
|
|
| 214 |
}
|
| 215 |
)
|
| 216 |
|
| 217 |
-
def cleanup(self):
|
| 218 |
-
super().cleanup()
|
| 219 |
-
del self.compiled_transformer
|
| 220 |
|
| 221 |
@ExperimentRegistry.register(name="qwen_fa3_aot_int8")
|
| 222 |
class Qwen_FA3_AoT_int8(QwenBaseExperiment):
|
|
@@ -224,7 +225,7 @@ class Qwen_FA3_AoT_int8(QwenBaseExperiment):
|
|
| 224 |
def optimize(self):
|
| 225 |
self.pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 226 |
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 227 |
-
|
| 228 |
self.pipe,
|
| 229 |
cache_compiled=self.config.cache_compiled,
|
| 230 |
quantize=True,
|
|
@@ -236,6 +237,21 @@ class Qwen_FA3_AoT_int8(QwenBaseExperiment):
|
|
| 236 |
}
|
| 237 |
)
|
| 238 |
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from pathlib import Path
|
| 5 |
import random
|
| 6 |
import statistics
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
import torch
|
| 10 |
from PIL import Image
|
| 11 |
import pandas as pd
|
| 12 |
+
from spaces.zero.torch.aoti import ZeroGPUCompiledModel, ZeroGPUWeights
|
| 13 |
+
from torchao.quantization import Float8WeightOnlyConfig, Int4WeightOnlyConfig, Int8DynamicActivationInt4WeightConfig, Int8DynamicActivationInt8WeightConfig, quantize_
|
| 14 |
+
from torchao.quantization import Int8WeightOnlyConfig
|
| 15 |
+
import spaces
|
| 16 |
+
import torch
|
| 17 |
+
from torch.utils._pytree import tree_map
|
| 18 |
+
from torchao.utils import get_model_size_in_bytes
|
| 19 |
|
| 20 |
+
from qwenimage.debug import ftimed, print_first_param
|
| 21 |
from qwenimage.models.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
|
| 22 |
from qwenimage.models.transformer_qwenimage import QwenImageTransformer2DModel
|
| 23 |
from qwenimage.models.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
|
| 24 |
from qwenimage.experiment import AbstractExperiment, ExperimentConfig
|
| 25 |
from qwenimage.debug import ProfileSession, ftimed
|
| 26 |
+
from qwenimage.optimization import INDUCTOR_CONFIGS, TRANSFORMER_DYNAMIC_SHAPES, aoti_apply, drain_module_parameters, optimize_pipeline_
|
| 27 |
from qwenimage.prompt import build_camera_prompt
|
| 28 |
|
| 29 |
|
|
|
|
| 134 |
|
| 135 |
@ftimed
|
| 136 |
def optimize(self):
|
|
|
|
|
|
|
|
|
|
| 137 |
pass
|
| 138 |
|
| 139 |
@ftimed
|
|
|
|
| 188 |
class Qwen_AoT(QwenBaseExperiment):
|
| 189 |
@ftimed
|
| 190 |
def optimize(self):
|
| 191 |
+
optimize_pipeline_(
|
| 192 |
self.pipe,
|
| 193 |
cache_compiled=self.config.cache_compiled,
|
| 194 |
quantize=False,
|
|
|
|
| 198 |
"num_inference_steps":4
|
| 199 |
}
|
| 200 |
)
|
| 201 |
+
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
@ExperimentRegistry.register(name="qwen_fa3_aot")
|
| 204 |
class Qwen_FA3_AoT(QwenBaseExperiment):
|
|
|
|
| 206 |
def optimize(self):
|
| 207 |
self.pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 208 |
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 209 |
+
optimize_pipeline_(
|
| 210 |
self.pipe,
|
| 211 |
cache_compiled=self.config.cache_compiled,
|
| 212 |
quantize=False,
|
|
|
|
| 218 |
}
|
| 219 |
)
|
| 220 |
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
@ExperimentRegistry.register(name="qwen_fa3_aot_int8")
|
| 223 |
class Qwen_FA3_AoT_int8(QwenBaseExperiment):
|
|
|
|
| 225 |
def optimize(self):
|
| 226 |
self.pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 227 |
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 228 |
+
optimize_pipeline_(
|
| 229 |
self.pipe,
|
| 230 |
cache_compiled=self.config.cache_compiled,
|
| 231 |
quantize=True,
|
|
|
|
| 237 |
}
|
| 238 |
)
|
| 239 |
|
| 240 |
+
|
| 241 |
+
@ExperimentRegistry.register(name="qwen_fp8")
|
| 242 |
+
class Qwen_fp8(QwenBaseExperiment):
|
| 243 |
+
@ftimed
|
| 244 |
+
def optimize(self):
|
| 245 |
+
self.pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 246 |
+
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 247 |
+
quantize_(self.pipe.transformer, Float8WeightOnlyConfig())
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
@ExperimentRegistry.register(name="qwen_int8")
|
| 251 |
+
class Qwen_int8(QwenBaseExperiment):
|
| 252 |
+
@ftimed
|
| 253 |
+
def optimize(self):
|
| 254 |
+
self.pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 255 |
+
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 256 |
+
quantize_(self.pipe.transformer, Int8WeightOnlyConfig())
|
| 257 |
+
|
qwenimage/models/pipeline_qwenimage_edit_plus.py
CHANGED
|
@@ -876,11 +876,12 @@ class QwenImageEditPlusPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
|
|
| 876 |
if XLA_AVAILABLE:
|
| 877 |
xm.mark_step()
|
| 878 |
|
| 879 |
-
with ctimed("Post (vae)"):
|
| 880 |
-
|
| 881 |
-
|
| 882 |
-
|
| 883 |
-
|
|
|
|
| 884 |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
| 885 |
latents = latents.to(self.vae.dtype)
|
| 886 |
latents_mean = (
|
|
@@ -892,14 +893,17 @@ class QwenImageEditPlusPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
|
|
| 892 |
latents.device, latents.dtype
|
| 893 |
)
|
| 894 |
latents = latents / latents_std + latents_mean
|
| 895 |
-
|
| 896 |
-
|
|
|
|
| 897 |
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 898 |
|
| 899 |
-
|
|
|
|
|
|
|
| 900 |
self.maybe_free_model_hooks()
|
| 901 |
|
| 902 |
-
|
| 903 |
-
|
| 904 |
|
| 905 |
return QwenImagePipelineOutput(images=image)
|
|
|
|
| 876 |
if XLA_AVAILABLE:
|
| 877 |
xm.mark_step()
|
| 878 |
|
| 879 |
+
# with ctimed("Post (vae)"):
|
| 880 |
+
self._current_timestep = None
|
| 881 |
+
if output_type == "latent":
|
| 882 |
+
image = latents
|
| 883 |
+
else:
|
| 884 |
+
with ctimed("pre decode"):
|
| 885 |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
| 886 |
latents = latents.to(self.vae.dtype)
|
| 887 |
latents_mean = (
|
|
|
|
| 893 |
latents.device, latents.dtype
|
| 894 |
)
|
| 895 |
latents = latents / latents_std + latents_mean
|
| 896 |
+
with ctimed("vae.decode"):
|
| 897 |
+
image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
|
| 898 |
+
with ctimed("post process"):
|
| 899 |
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 900 |
|
| 901 |
+
|
| 902 |
+
# Offload all models
|
| 903 |
+
with ctimed("offload"):
|
| 904 |
self.maybe_free_model_hooks()
|
| 905 |
|
| 906 |
+
if not return_dict:
|
| 907 |
+
return (image,)
|
| 908 |
|
| 909 |
return QwenImagePipelineOutput(images=image)
|
qwenimage/optimization.py
CHANGED
|
@@ -68,6 +68,7 @@ def drain_module_parameters(module: torch.nn.Module):
|
|
| 68 |
|
| 69 |
|
| 70 |
@ftimed
|
|
|
|
| 71 |
def optimize_pipeline_(
|
| 72 |
pipeline: Callable[P, Any],
|
| 73 |
cache_compiled=True,
|
|
@@ -116,4 +117,3 @@ def optimize_pipeline_(
|
|
| 116 |
|
| 117 |
|
| 118 |
aoti_apply(compiled_transformer, pipeline.transformer)
|
| 119 |
-
return compiled_transformer
|
|
|
|
| 68 |
|
| 69 |
|
| 70 |
@ftimed
|
| 71 |
+
@spaces.GPU(duration=1500)
|
| 72 |
def optimize_pipeline_(
|
| 73 |
pipeline: Callable[P, Any],
|
| 74 |
cache_compiled=True,
|
|
|
|
| 117 |
|
| 118 |
|
| 119 |
aoti_apply(compiled_transformer, pipeline.transformer)
|
|
|
scripts/plot_data.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
scripts/run_experiment.py
CHANGED
|
@@ -1,19 +1,33 @@
|
|
| 1 |
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
from qwenimage.experiment import ExperimentConfig
|
| 5 |
-
from qwenimage.experiments.experiments_qwen import Qwen_AoT, QwenBaseExperiment, ExperimentRegistry
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
experiment = Qwen_AoT(ExperimentConfig(name="qwen-aot"))
|
| 14 |
-
experiment.load()
|
| 15 |
-
experiment.optimize()
|
| 16 |
-
experiment.run()
|
| 17 |
-
experiment.report()
|
| 18 |
|
|
|
|
|
|
|
| 19 |
|
|
|
|
| 1 |
|
| 2 |
+
import argparse
|
| 3 |
|
| 4 |
+
from qwenimage.debug import clear_cuda_memory, print_gpu_memory
|
| 5 |
from qwenimage.experiment import ExperimentConfig
|
| 6 |
+
from qwenimage.experiments.experiments_qwen import PipeInputs, Qwen_AoT, QwenBaseExperiment, ExperimentRegistry
|
| 7 |
+
|
| 8 |
|
| 9 |
+
def main():
|
| 10 |
+
parser = argparse.ArgumentParser()
|
| 11 |
+
parser.add_argument("--name", type=str, required=True)
|
| 12 |
+
parser.add_argument("--iterations", type=int, default=100)
|
| 13 |
+
args = parser.parse_args()
|
| 14 |
+
|
| 15 |
+
name = args.name
|
| 16 |
+
|
| 17 |
+
pipe_inputs = PipeInputs()
|
| 18 |
+
experiment = ExperimentRegistry.get(name)(
|
| 19 |
+
config=ExperimentConfig(
|
| 20 |
+
name=name,
|
| 21 |
+
iterations=args.iterations,
|
| 22 |
+
),
|
| 23 |
+
pipe_inputs=pipe_inputs,
|
| 24 |
+
)
|
| 25 |
+
experiment.load()
|
| 26 |
+
experiment.optimize()
|
| 27 |
+
experiment.run()
|
| 28 |
+
experiment.report()
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
if __name__ == "__main__":
|
| 32 |
+
main()
|
| 33 |
|
scripts/run_experiment_modal.py
DELETED
|
@@ -1,21 +0,0 @@
|
|
| 1 |
-
|
| 2 |
-
import modal
|
| 3 |
-
|
| 4 |
-
from qwenimage.experiment import ExperimentConfig
|
| 5 |
-
from qwenimage.experiments.experiments_qwen import QwenBaseExperiment
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
app = modal.App("gradio-demo")
|
| 9 |
-
app.image = (
|
| 10 |
-
modal.Image.debian_slim(python_version="3.10")
|
| 11 |
-
.apt_install("git", "ffmpeg", "libsm6", "libxext6")
|
| 12 |
-
.pip_install_from_requirements(os.path.abspath("./requirements.txt"))
|
| 13 |
-
.add_local_python_source("qwenimage")
|
| 14 |
-
)
|
| 15 |
-
|
| 16 |
-
experiment = QwenBaseExperiment(ExperimentConfig(name="qwen-base"))
|
| 17 |
-
|
| 18 |
-
experiment.load()
|
| 19 |
-
experiment.optimize()
|
| 20 |
-
experiment.run()
|
| 21 |
-
experiment.report()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/run_multi.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import subprocess
|
| 3 |
+
import sys
|
| 4 |
+
|
| 5 |
+
from qwenimage.experiments.experiments_qwen import ExperimentRegistry
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def main():
|
| 9 |
+
parser = argparse.ArgumentParser()
|
| 10 |
+
parser.add_argument("--iterations", type=int, default=4)
|
| 11 |
+
args = parser.parse_args()
|
| 12 |
+
|
| 13 |
+
experiment_names = ExperimentRegistry.keys()
|
| 14 |
+
print(f"{len(experiment_names)}x {experiment_names}")
|
| 15 |
+
|
| 16 |
+
for name in experiment_names:
|
| 17 |
+
print(name)
|
| 18 |
+
|
| 19 |
+
cmd = [
|
| 20 |
+
sys.executable,
|
| 21 |
+
"scripts/run_experiment.py",
|
| 22 |
+
"--name", name,
|
| 23 |
+
"--iterations", str(args.iterations),
|
| 24 |
+
]
|
| 25 |
+
|
| 26 |
+
result = subprocess.run(cmd, check=True, capture_output=False, text=True)
|
| 27 |
+
print(result)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
if __name__ == "__main__":
|
| 31 |
+
main()
|
| 32 |
+
|
scripts/run_multi_experiments.py
DELETED
|
@@ -1,87 +0,0 @@
|
|
| 1 |
-
|
| 2 |
-
import matplotlib.pyplot as plt
|
| 3 |
-
import pandas as pd
|
| 4 |
-
|
| 5 |
-
from qwenimage.debug import clear_cuda_memory, print_gpu_memory
|
| 6 |
-
from qwenimage.experiment import ExperimentConfig
|
| 7 |
-
from qwenimage.experiments.experiments_qwen import ExperimentRegistry, PipeInputs
|
| 8 |
-
|
| 9 |
-
experiment_names = ExperimentRegistry.keys()
|
| 10 |
-
print(experiment_names)
|
| 11 |
-
|
| 12 |
-
pipe_inputs = PipeInputs()
|
| 13 |
-
|
| 14 |
-
# Collect results from all experiments
|
| 15 |
-
all_results = []
|
| 16 |
-
|
| 17 |
-
for name in experiment_names:
|
| 18 |
-
print(f"Running {name}")
|
| 19 |
-
experiment = ExperimentRegistry.get(name)(
|
| 20 |
-
config=ExperimentConfig(
|
| 21 |
-
name=name,
|
| 22 |
-
iterations=10,
|
| 23 |
-
),
|
| 24 |
-
pipe_inputs=pipe_inputs,
|
| 25 |
-
)
|
| 26 |
-
experiment.load()
|
| 27 |
-
experiment.optimize()
|
| 28 |
-
experiment.run()
|
| 29 |
-
base_df, base_raw_data = experiment.report()
|
| 30 |
-
|
| 31 |
-
# Add experiment name to the dataframe
|
| 32 |
-
base_df['experiment'] = name
|
| 33 |
-
all_results.append(base_df)
|
| 34 |
-
|
| 35 |
-
experiment.cleanup()
|
| 36 |
-
del experiment
|
| 37 |
-
|
| 38 |
-
clear_cuda_memory()
|
| 39 |
-
|
| 40 |
-
print_gpu_memory(clear_mem=None)
|
| 41 |
-
|
| 42 |
-
# Combine all results
|
| 43 |
-
combined_df = pd.concat(all_results, ignore_index=True)
|
| 44 |
-
|
| 45 |
-
# Define desired names to plot
|
| 46 |
-
desired_names = ["loop", "QwenBaseExperiment.run_once"]
|
| 47 |
-
|
| 48 |
-
# Filter for desired names
|
| 49 |
-
plot_data = combined_df[combined_df['name'].isin(desired_names)].copy()
|
| 50 |
-
|
| 51 |
-
print(plot_data)
|
| 52 |
-
|
| 53 |
-
# Sort by mean in descending order (rightmost = lowest mean)
|
| 54 |
-
plot_data = plot_data.sort_values('mean', ascending=False)
|
| 55 |
-
|
| 56 |
-
# Create bar plot
|
| 57 |
-
fig, ax = plt.subplots(figsize=(12, 6))
|
| 58 |
-
|
| 59 |
-
# Create x positions for bars
|
| 60 |
-
x_pos = range(len(plot_data))
|
| 61 |
-
|
| 62 |
-
# Plot bars with error bars
|
| 63 |
-
bars = ax.bar(x_pos, plot_data['mean'], yerr=plot_data['std'],
|
| 64 |
-
capsize=5, alpha=0.7, edgecolor='black')
|
| 65 |
-
|
| 66 |
-
# Customize plot
|
| 67 |
-
ax.set_xlabel('Method', fontsize=12, fontweight='bold')
|
| 68 |
-
ax.set_ylabel('Time (seconds)', fontsize=12, fontweight='bold')
|
| 69 |
-
ax.set_title('Performance Comparison: Mean Execution Time with Standard Deviation',
|
| 70 |
-
fontsize=14, fontweight='bold')
|
| 71 |
-
ax.set_xticks(x_pos)
|
| 72 |
-
ax.set_xticklabels([f"{row['experiment']}\n{row['name']}"
|
| 73 |
-
for _, row in plot_data.iterrows()],
|
| 74 |
-
rotation=45, ha='right')
|
| 75 |
-
ax.grid(axis='y', alpha=0.3)
|
| 76 |
-
|
| 77 |
-
# Add value labels on top of bars
|
| 78 |
-
for i, (idx, row) in enumerate(plot_data.iterrows()):
|
| 79 |
-
ax.text(i, row['mean'] + row['std'], f"{row['mean']:.3f}s",
|
| 80 |
-
ha='center', va='bottom', fontsize=9)
|
| 81 |
-
|
| 82 |
-
plt.tight_layout()
|
| 83 |
-
plt.savefig('reports/performance_comparison.png', dpi=300, bbox_inches='tight')
|
| 84 |
-
print("\nPerformance comparison plot saved to: reports/performance_comparison.png")
|
| 85 |
-
plt.show()
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|