Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,10 +13,30 @@ import torch
|
|
| 13 |
import random
|
| 14 |
from transformers import pipeline
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
from huggingface_hub import hf_hub_download
|
| 22 |
|
|
@@ -26,18 +46,19 @@ login(token=hf_token)
|
|
| 26 |
|
| 27 |
MAX_SEED = np.iinfo(np.int32).max
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
if randomize_seed:
|
| 39 |
-
seed = random.randint(0, MAX_SEED)
|
| 40 |
-
return seed
|
| 41 |
|
| 42 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 43 |
model_configs = {
|
|
@@ -66,11 +87,17 @@ controlnet = FluxMultiControlNetModel([controlnet])
|
|
| 66 |
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
| 67 |
pipe.to("cuda")
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
|
|
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 76 |
pipe.vae.enable_tiling()
|
|
@@ -154,47 +181,51 @@ def resize_img(input_image, max_side=768, min_side=512, size=None,
|
|
| 154 |
|
| 155 |
@spaces.GPU()
|
| 156 |
def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
torch.cuda.empty_cache()
|
| 196 |
|
| 197 |
-
|
|
|
|
|
|
|
| 198 |
|
| 199 |
|
| 200 |
css = """
|
|
|
|
| 13 |
import random
|
| 14 |
from transformers import pipeline
|
| 15 |
|
| 16 |
+
# Fix 1: Install controlnet_aux properly
|
| 17 |
+
# os.system("pip install -e ./controlnet_aux")
|
| 18 |
+
# Instead, try installing directly from GitHub:
|
| 19 |
+
os.system("pip install git+https://github.com/lllyasviel/ControlNet-v1-1-nightly.git@main#subdirectory=annotator")
|
| 20 |
|
| 21 |
+
# Fix 2: Better error handling for the Korean translator
|
| 22 |
+
def translate_to_english(text):
|
| 23 |
+
# Check if Korean characters are present
|
| 24 |
+
if any('\uAC00' <= char <= '\uD7A3' for char in text):
|
| 25 |
+
try:
|
| 26 |
+
# Try to load the translator
|
| 27 |
+
try:
|
| 28 |
+
# First, try with from_tf=True as suggested in the error message
|
| 29 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", from_tf=True)
|
| 30 |
+
except:
|
| 31 |
+
# If that fails, try a different model
|
| 32 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en-m2m-100")
|
| 33 |
+
|
| 34 |
+
return translator(text, max_length=512)[0]['translation_text']
|
| 35 |
+
except Exception as e:
|
| 36 |
+
print(f"Translation error: {e}")
|
| 37 |
+
# Return original text if translation fails
|
| 38 |
+
return text
|
| 39 |
+
return text
|
| 40 |
|
| 41 |
from huggingface_hub import hf_hub_download
|
| 42 |
|
|
|
|
| 46 |
|
| 47 |
MAX_SEED = np.iinfo(np.int32).max
|
| 48 |
|
| 49 |
+
# Import ControlNet processors with better error handling
|
| 50 |
+
try:
|
| 51 |
+
from controlnet_aux import OpenposeDetector, CannyDetector
|
| 52 |
+
except ImportError:
|
| 53 |
+
print("Failed to import from controlnet_aux, trying alternate imports...")
|
| 54 |
+
try:
|
| 55 |
+
from annotator.openpose import OpenposeDetector
|
| 56 |
+
from annotator.canny import CannyDetector
|
| 57 |
+
except ImportError:
|
| 58 |
+
print("Could not import ControlNet processors. Using fallback implementations.")
|
| 59 |
+
# Define fallback implementations if needed
|
| 60 |
|
| 61 |
+
from depth_anything_v2.dpt import DepthAnythingV2
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 64 |
model_configs = {
|
|
|
|
| 87 |
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
| 88 |
pipe.to("cuda")
|
| 89 |
|
| 90 |
+
# Fixed dictionary keys to use English for consistency
|
| 91 |
+
mode_mapping = {"Canny":0, "Tile":1, "Depth":2, "Blur":3, "OpenPose":4, "Grayscale":5, "LowQuality": 6}
|
| 92 |
+
strength_mapping = {"Canny":0.65, "Tile":0.45, "Depth":0.55, "Blur":0.45, "OpenPose":0.55, "Grayscale":0.45, "LowQuality": 0.4}
|
| 93 |
|
| 94 |
+
# Load processors with error handling
|
| 95 |
+
try:
|
| 96 |
+
canny = CannyDetector()
|
| 97 |
+
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
|
| 98 |
+
except Exception as e:
|
| 99 |
+
print(f"Error loading processors: {e}")
|
| 100 |
+
# Define fallback functions if needed
|
| 101 |
|
| 102 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 103 |
pipe.vae.enable_tiling()
|
|
|
|
| 181 |
|
| 182 |
@spaces.GPU()
|
| 183 |
def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)):
|
| 184 |
+
try:
|
| 185 |
+
control_mode_num = mode_mapping[control_mode]
|
| 186 |
+
prompt = translate_to_english(prompt)
|
| 187 |
|
| 188 |
+
if cond_in is None:
|
| 189 |
+
if image_in is not None:
|
| 190 |
+
image_in = resize_img(load_image(image_in))
|
| 191 |
+
if control_mode == "Canny":
|
| 192 |
+
control_image = extract_canny(image_in)
|
| 193 |
+
elif control_mode == "Depth":
|
| 194 |
+
control_image = extract_depth(image_in)
|
| 195 |
+
elif control_mode == "OpenPose":
|
| 196 |
+
control_image = extract_openpose(image_in)
|
| 197 |
+
elif control_mode == "Blur":
|
| 198 |
+
control_image = apply_gaussian_blur(image_in)
|
| 199 |
+
elif control_mode == "LowQuality":
|
| 200 |
+
control_image = add_gaussian_noise(image_in)
|
| 201 |
+
elif control_mode == "Grayscale":
|
| 202 |
+
control_image = convert_to_grayscale(image_in)
|
| 203 |
+
elif control_mode == "Tile":
|
| 204 |
+
control_image = tile(image_in)
|
| 205 |
+
else:
|
| 206 |
+
control_image = resize_img(load_image(cond_in))
|
| 207 |
+
|
| 208 |
+
width, height = control_image.size
|
| 209 |
+
|
| 210 |
+
image = pipe(
|
| 211 |
+
prompt,
|
| 212 |
+
control_image=[control_image],
|
| 213 |
+
control_mode=[control_mode_num],
|
| 214 |
+
width=width,
|
| 215 |
+
height=height,
|
| 216 |
+
controlnet_conditioning_scale=[control_strength],
|
| 217 |
+
num_inference_steps=inference_steps,
|
| 218 |
+
guidance_scale=guidance_scale,
|
| 219 |
+
generator=torch.manual_seed(seed),
|
| 220 |
+
).images[0]
|
| 221 |
+
|
| 222 |
+
torch.cuda.empty_cache()
|
| 223 |
+
|
| 224 |
+
return image, control_image, gr.update(visible=True)
|
|
|
|
| 225 |
|
| 226 |
+
except Exception as e:
|
| 227 |
+
print(f"Error in inference: {e}")
|
| 228 |
+
return None, None, gr.update(visible=True)
|
| 229 |
|
| 230 |
|
| 231 |
css = """
|