Spaces:
Build error
Build error
| from transformers.configuration_utils import PretrainedConfig | |
| from transformers.utils import logging | |
| from transformers.models.auto import CONFIG_MAPPING | |
| logger = logging.get_logger(__name__) | |
| class GeckoConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`LlavaForConditionalGeneration`]. It is used to instantiate an | |
| Llava model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
| with the defaults will yield a similar configuration to that of the Llava-9B. | |
| e.g. [llava-hf/llava-9b](https://huggingface.co/llava-hf/llava-9b) | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| vision_config (`LlavaVisionConfig`, *optional*): | |
| Custom vision config or dict | |
| text_config (`Union[AutoConfig, dict]`, *optional*): | |
| The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`. | |
| ignore_index (`int`, *optional*, defaults to -100): | |
| The ignore index for the loss function. | |
| image_token_index (`int`, *optional*, defaults to 32000): | |
| The image token index to encode the image prompt. | |
| projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): | |
| The activation function used by the multimodal projector. | |
| vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): | |
| The feature selection strategy used to select the vision feature from the CLIP backbone. | |
| vision_feature_layer (`int`, *optional*, defaults to -2): | |
| The index of the layer to select the vision feature. | |
| vocab_size (`int`, *optional*, defaults to 32000): | |
| Vocabulary size of the Llava model. Defines the number of different tokens that can be represented by the | |
| `inputs_ids` passed when calling [`~LlavaForConditionalGeneration`] | |
| """ | |
| model_type = "gecko" | |
| is_composition = False | |
| def __init__( | |
| self, | |
| vision_config=None, | |
| text_config=None, | |
| ignore_index=-100, | |
| image_token_index=32000, | |
| projector_hidden_act="gelu", | |
| vision_feature_select_strategy="cls", | |
| patch_picking_strategy="across_layers", | |
| vision_feature_layer=-2, | |
| vocab_size=32000, | |
| topk=4, | |
| keyword_criteria="template", | |
| positional_information="explicit", | |
| visualize_patches=False, | |
| visualize_topk_patches=False, | |
| print_keyword=False, | |
| print_topk_patches=False, | |
| **kwargs, | |
| ): | |
| self.ignore_index = ignore_index | |
| self.image_token_index = image_token_index | |
| self.projector_hidden_act = projector_hidden_act | |
| self.vision_feature_layer = vision_feature_layer | |
| self.vision_feature_select_strategy = vision_feature_select_strategy | |
| self.patch_picking_strategy = patch_picking_strategy | |
| self.vocab_size = vocab_size | |
| self.topk = topk | |
| self.vision_config = vision_config | |
| self.text_config = text_config | |
| self.keyword_criteria = keyword_criteria | |
| self.positional_information = positional_information | |
| self.visualize_patches = visualize_patches | |
| self.visualize_topk_patches = visualize_topk_patches | |
| self.print_keyword = print_keyword | |
| self.print_topk_patches = print_topk_patches | |
| if isinstance(self.vision_config, dict): | |
| vision_config["model_type"] = ( | |
| vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model" | |
| ) | |
| self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) | |
| elif vision_config is None: | |
| self.vision_config = CONFIG_MAPPING["clip_vision_model"]( | |
| intermediate_size=4096, | |
| hidden_size=1024, | |
| patch_size=14, | |
| image_size=336, | |
| num_hidden_layers=24, | |
| num_attention_heads=16, | |
| vocab_size=32000, | |
| projection_dim=768, | |
| ) | |
| self.vocab_size = self.vocab_size | |
| self.text_config = text_config | |
| if isinstance(self.text_config, dict): | |
| text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama" | |
| self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) | |
| self.vocab_size = self.text_config.vocab_size | |
| elif text_config is None: | |
| self.text_config = CONFIG_MAPPING["llama"]() | |
| super().__init__(**kwargs) |