Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,4 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import spaces
|
| 3 |
-
|
| 4 |
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
|
| 5 |
import torch
|
| 6 |
import sa_handler
|
|
@@ -27,69 +25,71 @@ from diffusers.utils import load_image
|
|
| 27 |
import inversion
|
| 28 |
import numpy as np
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
num_inference_steps = 50
|
| 35 |
-
x0 = np.array(load_image(image_path).resize((1024, 1024)))
|
| 36 |
-
zts = inversion.ddim_inversion(pipeline, x0, src_prompt, num_inference_steps, 2)
|
| 37 |
-
#mediapy.show_image(x0, title="innput reference image", height=256)
|
| 38 |
|
| 39 |
-
# run StyleAligned
|
| 40 |
-
prompts = [
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
]
|
| 46 |
|
| 47 |
-
# some parameters you can adjust to control fidelity to reference
|
| 48 |
-
shared_score_shift = np.log(2) # higher value induces higher fidelity, set 0 for no shift
|
| 49 |
-
shared_score_scale = 1.0 # higher value induces higher, set 1 for no rescale
|
| 50 |
|
| 51 |
-
# for very famouse images consider supressing attention to refference, here is a configuration example:
|
| 52 |
-
# shared_score_shift = np.log(1)
|
| 53 |
-
# shared_score_scale = 0.5
|
| 54 |
|
| 55 |
-
for i in range(1, len(prompts)):
|
| 56 |
-
|
| 57 |
|
| 58 |
-
handler = sa_handler.Handler(pipeline)
|
| 59 |
-
sa_args = sa_handler.StyleAlignedArgs(
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
handler.register(sa_args)
|
| 64 |
|
| 65 |
-
zT, inversion_callback = inversion.make_inversion_callback(zts, offset=5)
|
| 66 |
|
| 67 |
-
g_cpu = torch.Generator(device='cpu')
|
| 68 |
-
g_cpu.manual_seed(10)
|
| 69 |
|
| 70 |
-
latents = torch.randn(len(prompts), 4, 128, 128, device='cpu', generator=g_cpu,
|
| 71 |
dtype=pipeline.unet.dtype,).to('cuda:0')
|
| 72 |
-
latents[0] = zT
|
| 73 |
|
| 74 |
-
images_a = pipeline(prompts, latents=latents,
|
| 75 |
callback_on_step_end=inversion_callback,
|
| 76 |
num_inference_steps=num_inference_steps, guidance_scale=10.0).images
|
| 77 |
|
| 78 |
-
handler.remove()
|
| 79 |
-
mediapy.show_images(images_a, titles=[p[:-(len(src_style) + 3)] for p in prompts])
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
@spaces.GPU
|
| 83 |
-
def infer(prompts):
|
| 84 |
-
|
| 85 |
|
| 86 |
-
images = pipeline(sets_of_prompts,).images
|
| 87 |
return images_a
|
|
|
|
| 88 |
|
| 89 |
gr.Interface(
|
| 90 |
-
fn=
|
| 91 |
inputs=[
|
| 92 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
],
|
| 94 |
outputs=[
|
| 95 |
gr.Gallery()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
|
| 3 |
import torch
|
| 4 |
import sa_handler
|
|
|
|
| 25 |
import inversion
|
| 26 |
import numpy as np
|
| 27 |
|
| 28 |
+
def run(ref_path, ref_style, ref_prompt, prompt1, prompt2, prompt3):
|
| 29 |
+
|
| 30 |
+
src_style = f"{ref_style}"
|
| 31 |
+
src_prompt = f"{ref_prompt}, {src_style}."
|
| 32 |
+
image_path = f"{ref_path}"
|
| 33 |
|
| 34 |
+
num_inference_steps = 50
|
| 35 |
+
x0 = np.array(load_image(image_path).resize((1024, 1024)))
|
| 36 |
+
zts = inversion.ddim_inversion(pipeline, x0, src_prompt, num_inference_steps, 2)
|
| 37 |
+
#mediapy.show_image(x0, title="innput reference image", height=256)
|
| 38 |
|
| 39 |
+
# run StyleAligned
|
| 40 |
+
prompts = [
|
| 41 |
+
src_prompt,
|
| 42 |
+
prompt1,
|
| 43 |
+
prompt2.
|
| 44 |
+
prompt3
|
| 45 |
+
]
|
| 46 |
|
| 47 |
+
# some parameters you can adjust to control fidelity to reference
|
| 48 |
+
shared_score_shift = np.log(2) # higher value induces higher fidelity, set 0 for no shift
|
| 49 |
+
shared_score_scale = 1.0 # higher value induces higher, set 1 for no rescale
|
| 50 |
|
| 51 |
+
# for very famouse images consider supressing attention to refference, here is a configuration example:
|
| 52 |
+
# shared_score_shift = np.log(1)
|
| 53 |
+
# shared_score_scale = 0.5
|
| 54 |
|
| 55 |
+
for i in range(1, len(prompts)):
|
| 56 |
+
prompts[i] = f'{prompts[i]}, {src_style}.'
|
| 57 |
|
| 58 |
+
handler = sa_handler.Handler(pipeline)
|
| 59 |
+
sa_args = sa_handler.StyleAlignedArgs(
|
| 60 |
+
share_group_norm=True, share_layer_norm=True, share_attention=True,
|
| 61 |
+
adain_queries=True, adain_keys=True, adain_values=False,
|
| 62 |
+
shared_score_shift=shared_score_shift, shared_score_scale=shared_score_scale,)
|
| 63 |
+
handler.register(sa_args)
|
| 64 |
|
| 65 |
+
zT, inversion_callback = inversion.make_inversion_callback(zts, offset=5)
|
| 66 |
|
| 67 |
+
g_cpu = torch.Generator(device='cpu')
|
| 68 |
+
g_cpu.manual_seed(10)
|
| 69 |
|
| 70 |
+
latents = torch.randn(len(prompts), 4, 128, 128, device='cpu', generator=g_cpu,
|
| 71 |
dtype=pipeline.unet.dtype,).to('cuda:0')
|
| 72 |
+
latents[0] = zT
|
| 73 |
|
| 74 |
+
images_a = pipeline(prompts, latents=latents,
|
| 75 |
callback_on_step_end=inversion_callback,
|
| 76 |
num_inference_steps=num_inference_steps, guidance_scale=10.0).images
|
| 77 |
|
| 78 |
+
handler.remove()
|
| 79 |
+
#mediapy.show_images(images_a, titles=[p[:-(len(src_style) + 3)] for p in prompts])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
|
|
|
| 81 |
return images_a
|
| 82 |
+
|
| 83 |
|
| 84 |
gr.Interface(
|
| 85 |
+
fn=run,
|
| 86 |
inputs=[
|
| 87 |
+
gr.Image(type="filepath", value="./example_image/medieval-bed.jpeg"),
|
| 88 |
+
gr.Textbox(value="medieval painting"),
|
| 89 |
+
gr.Textbox(value="Man laying on bed"),
|
| 90 |
+
gr.Textbox(value="A man working on a laptop"),
|
| 91 |
+
gr.Textbox(value="A man eating pizza"),
|
| 92 |
+
gr.Textbox(value="A woman playing on saxophone")
|
| 93 |
],
|
| 94 |
outputs=[
|
| 95 |
gr.Gallery()
|