Mirko Trasciatti
commited on
Commit
·
3cddaf8
1
Parent(s):
69f4f56
Deploy SAM2 Video Background Remover with Gradio UI and API
Browse files- .gitignore +64 -0
- README.md +233 -7
- api_example.py +356 -0
- app.py +540 -0
- requirements.txt +8 -0
.gitignore
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
build/
|
| 8 |
+
develop-eggs/
|
| 9 |
+
dist/
|
| 10 |
+
downloads/
|
| 11 |
+
eggs/
|
| 12 |
+
.eggs/
|
| 13 |
+
lib/
|
| 14 |
+
lib64/
|
| 15 |
+
parts/
|
| 16 |
+
sdist/
|
| 17 |
+
var/
|
| 18 |
+
wheels/
|
| 19 |
+
*.egg-info/
|
| 20 |
+
.installed.cfg
|
| 21 |
+
*.egg
|
| 22 |
+
|
| 23 |
+
# Virtual environments
|
| 24 |
+
.venv
|
| 25 |
+
venv/
|
| 26 |
+
ENV/
|
| 27 |
+
env/
|
| 28 |
+
|
| 29 |
+
# IDEs
|
| 30 |
+
.vscode/
|
| 31 |
+
.idea/
|
| 32 |
+
*.swp
|
| 33 |
+
*.swo
|
| 34 |
+
*~
|
| 35 |
+
|
| 36 |
+
# Gradio
|
| 37 |
+
flagged/
|
| 38 |
+
gradio_cached_examples/
|
| 39 |
+
|
| 40 |
+
# Temporary files
|
| 41 |
+
*.tmp
|
| 42 |
+
*.temp
|
| 43 |
+
tmp/
|
| 44 |
+
temp/
|
| 45 |
+
|
| 46 |
+
# Video files (if you don't want to commit test videos)
|
| 47 |
+
*.mp4
|
| 48 |
+
*.avi
|
| 49 |
+
*.mov
|
| 50 |
+
*.mkv
|
| 51 |
+
!example_*.mp4
|
| 52 |
+
|
| 53 |
+
# Model cache
|
| 54 |
+
.cache/
|
| 55 |
+
models/
|
| 56 |
+
|
| 57 |
+
# OS
|
| 58 |
+
.DS_Store
|
| 59 |
+
Thumbs.db
|
| 60 |
+
|
| 61 |
+
# Logs
|
| 62 |
+
*.log
|
| 63 |
+
logs/
|
| 64 |
+
|
README.md
CHANGED
|
@@ -1,14 +1,240 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: SAM2 Video Background Remover
|
| 3 |
+
emoji: 🎥
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
+
tags:
|
| 12 |
+
- computer-vision
|
| 13 |
+
- video
|
| 14 |
+
- segmentation
|
| 15 |
+
- sam2
|
| 16 |
+
- background-removal
|
| 17 |
+
- object-tracking
|
| 18 |
---
|
| 19 |
|
| 20 |
+
# 🎥 SAM2 Video Background Remover
|
| 21 |
+
|
| 22 |
+
Remove backgrounds from videos by tracking objects using Meta's **Segment Anything Model 2 (SAM2)**.
|
| 23 |
+
|
| 24 |
+
## Features
|
| 25 |
+
|
| 26 |
+
✨ **Background Removal**: Automatically remove backgrounds and keep only tracked objects
|
| 27 |
+
🎯 **Object Tracking**: Track multiple objects across video frames
|
| 28 |
+
🖥️ **Interactive UI**: Easy-to-use Gradio interface
|
| 29 |
+
🔌 **REST API**: Programmatic access via API endpoints
|
| 30 |
+
⚡ **GPU Accelerated**: Fast processing with CUDA support
|
| 31 |
+
|
| 32 |
+
## How It Works
|
| 33 |
+
|
| 34 |
+
SAM2 is a foundation model for video segmentation that can:
|
| 35 |
+
1. **Segment objects** based on point or box annotations
|
| 36 |
+
2. **Track objects** automatically across all video frames
|
| 37 |
+
3. **Handle occlusions** and object reappearance
|
| 38 |
+
4. **Process multiple objects** simultaneously
|
| 39 |
+
|
| 40 |
+
## Usage
|
| 41 |
+
|
| 42 |
+
### 🖱️ Simple Mode (Web UI)
|
| 43 |
+
|
| 44 |
+
1. Upload your video
|
| 45 |
+
2. Specify X,Y coordinates of the object you want to track (from first frame)
|
| 46 |
+
3. Click "Process Video"
|
| 47 |
+
4. Download the result with background removed!
|
| 48 |
+
|
| 49 |
+
**Example**: For a 640x480 video with a person in the center, use X=320, Y=240
|
| 50 |
+
|
| 51 |
+
### 🔧 Advanced Mode (JSON Annotations)
|
| 52 |
+
|
| 53 |
+
For more control, use JSON annotations:
|
| 54 |
+
|
| 55 |
+
```json
|
| 56 |
+
[
|
| 57 |
+
{
|
| 58 |
+
"frame_idx": 0,
|
| 59 |
+
"object_id": 1,
|
| 60 |
+
"points": [[320, 240]],
|
| 61 |
+
"labels": [1]
|
| 62 |
+
}
|
| 63 |
+
]
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
**Parameters**:
|
| 67 |
+
- `frame_idx`: Frame number to annotate (0 = first frame)
|
| 68 |
+
- `object_id`: Unique ID for each object (1, 2, 3, ...)
|
| 69 |
+
- `points`: List of [x, y] coordinates on the object
|
| 70 |
+
- `labels`: `1` for foreground point, `0` for background point
|
| 71 |
+
|
| 72 |
+
### 📡 API Usage
|
| 73 |
+
|
| 74 |
+
You can call this Space programmatically using the Gradio Client:
|
| 75 |
+
|
| 76 |
+
#### Python Example
|
| 77 |
+
|
| 78 |
+
```python
|
| 79 |
+
from gradio_client import Client
|
| 80 |
+
import json
|
| 81 |
+
|
| 82 |
+
# Connect to the Space
|
| 83 |
+
client = Client("YOUR_USERNAME/sam2-video-bg-remover")
|
| 84 |
+
|
| 85 |
+
# Define what to track
|
| 86 |
+
annotations = [
|
| 87 |
+
{
|
| 88 |
+
"frame_idx": 0,
|
| 89 |
+
"object_id": 1,
|
| 90 |
+
"points": [[320, 240]], # x, y coordinates
|
| 91 |
+
"labels": [1] # 1 = foreground
|
| 92 |
+
}
|
| 93 |
+
]
|
| 94 |
+
|
| 95 |
+
# Process video
|
| 96 |
+
result = client.predict(
|
| 97 |
+
video_file="./input_video.mp4",
|
| 98 |
+
annotations_json=json.dumps(annotations),
|
| 99 |
+
remove_background=True,
|
| 100 |
+
max_frames=300, # Limit frames for faster processing
|
| 101 |
+
api_name="/segment_video_api"
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
print(f"Output video saved to: {result}")
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
#### Track Multiple Objects
|
| 108 |
+
|
| 109 |
+
```python
|
| 110 |
+
annotations = [
|
| 111 |
+
# First object (person)
|
| 112 |
+
{
|
| 113 |
+
"frame_idx": 0,
|
| 114 |
+
"object_id": 1,
|
| 115 |
+
"points": [[320, 240]],
|
| 116 |
+
"labels": [1]
|
| 117 |
+
},
|
| 118 |
+
# Second object (ball)
|
| 119 |
+
{
|
| 120 |
+
"frame_idx": 0,
|
| 121 |
+
"object_id": 2,
|
| 122 |
+
"points": [[500, 300]],
|
| 123 |
+
"labels": [1]
|
| 124 |
+
}
|
| 125 |
+
]
|
| 126 |
+
```
|
| 127 |
+
|
| 128 |
+
#### Refine Segmentation with Background Points
|
| 129 |
+
|
| 130 |
+
```python
|
| 131 |
+
annotations = [
|
| 132 |
+
{
|
| 133 |
+
"frame_idx": 0,
|
| 134 |
+
"object_id": 1,
|
| 135 |
+
"points": [
|
| 136 |
+
[320, 240], # Point ON the object
|
| 137 |
+
[100, 100] # Point on background to exclude
|
| 138 |
+
],
|
| 139 |
+
"labels": [1, 0] # 1=foreground, 0=background
|
| 140 |
+
}
|
| 141 |
+
]
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
### 🌐 HTTP API
|
| 145 |
+
|
| 146 |
+
You can also call the API directly via HTTP:
|
| 147 |
+
|
| 148 |
+
```bash
|
| 149 |
+
curl -X POST https://YOUR_USERNAME-sam2-video-bg-remover.hf.space/api/predict \
|
| 150 |
+
-F "video_file=@input_video.mp4" \
|
| 151 |
+
-F 'annotations_json=[{"frame_idx":0,"object_id":1,"points":[[320,240]],"labels":[1]}]' \
|
| 152 |
+
-F "remove_background=true" \
|
| 153 |
+
-F "max_frames=300"
|
| 154 |
+
```
|
| 155 |
+
|
| 156 |
+
## Parameters
|
| 157 |
+
|
| 158 |
+
| Parameter | Type | Default | Description |
|
| 159 |
+
|-----------|------|---------|-------------|
|
| 160 |
+
| `video_file` | File | - | Input video file (required) |
|
| 161 |
+
| `annotations_json` | String | - | JSON array of annotations (required) |
|
| 162 |
+
| `remove_background` | Boolean | `true` | Remove background or just highlight objects |
|
| 163 |
+
| `max_frames` | Integer | `null` | Limit frames for faster processing |
|
| 164 |
+
|
| 165 |
+
## Tips & Best Practices
|
| 166 |
+
|
| 167 |
+
### 🎯 Getting Good Results
|
| 168 |
+
|
| 169 |
+
1. **Choose Clear Points**: Click on the center/most distinctive part of your object
|
| 170 |
+
2. **Add Multiple Points**: For complex objects, add 2-3 points on different parts
|
| 171 |
+
3. **Use Background Points**: Add points with `label: 0` on areas you DON'T want
|
| 172 |
+
4. **Annotate Key Frames**: If object changes significantly, add annotations on multiple frames
|
| 173 |
+
|
| 174 |
+
### ⚡ Performance Tips
|
| 175 |
+
|
| 176 |
+
1. **Limit Frames**: Use `max_frames` parameter for long videos
|
| 177 |
+
2. **Use Smaller Model**: Default is `sam2.1-hiera-tiny` for speed
|
| 178 |
+
3. **Process Shorter Clips**: Split long videos into segments
|
| 179 |
+
|
| 180 |
+
### 🐛 Troubleshooting
|
| 181 |
+
|
| 182 |
+
| Issue | Solution |
|
| 183 |
+
|-------|----------|
|
| 184 |
+
| Object not tracked | Add more points on different parts of the object |
|
| 185 |
+
| Background leakage | Add background points with `label: 0` |
|
| 186 |
+
| Slow processing | Reduce `max_frames` or use a shorter video |
|
| 187 |
+
| Wrong object tracked | Be more precise with point coordinates |
|
| 188 |
+
|
| 189 |
+
## Model Information
|
| 190 |
+
|
| 191 |
+
This Space uses **facebook/sam2.1-hiera-tiny** for efficient processing. Other available models:
|
| 192 |
+
|
| 193 |
+
- `facebook/sam2.1-hiera-tiny` - Fastest, good quality ⚡
|
| 194 |
+
- `facebook/sam2.1-hiera-small` - Balanced
|
| 195 |
+
- `facebook/sam2.1-hiera-base-plus` - Higher quality
|
| 196 |
+
- `facebook/sam2.1-hiera-large` - Best quality, slower 🎯
|
| 197 |
+
|
| 198 |
+
## Use Cases
|
| 199 |
+
|
| 200 |
+
- 🎬 **Video Production**: Remove backgrounds for green screen effects
|
| 201 |
+
- 🏃 **Sports Analysis**: Isolate athletes for motion analysis
|
| 202 |
+
- 🎮 **Content Creation**: Extract game characters or objects
|
| 203 |
+
- 🔬 **Research**: Track objects in scientific videos
|
| 204 |
+
- 📱 **Social Media**: Create engaging content with background removal
|
| 205 |
+
|
| 206 |
+
## Limitations
|
| 207 |
+
|
| 208 |
+
- Video length affects processing time (longer = slower)
|
| 209 |
+
- GPU recommended for videos > 10 seconds
|
| 210 |
+
- Very fast-moving objects may require multiple annotations
|
| 211 |
+
- Extreme lighting changes can affect tracking quality
|
| 212 |
+
|
| 213 |
+
## Citation
|
| 214 |
+
|
| 215 |
+
If you use this Space, please cite the SAM2 paper:
|
| 216 |
+
|
| 217 |
+
```bibtex
|
| 218 |
+
@article{ravi2024sam2,
|
| 219 |
+
title={Segment Anything in Images and Videos},
|
| 220 |
+
author={Ravi, Nikhila and Gabeur, Valentin and Hu, Yuan-Ting and Hu, Ronghang and Ryali, Chaitanya and Ma, Tengyu and Khedr, Haitham and R{\"a}dle, Roman and Rolland, Chloe and Gustafson, Laura and others},
|
| 221 |
+
journal={arXiv preprint arXiv:2408.00714},
|
| 222 |
+
year={2024}
|
| 223 |
+
}
|
| 224 |
+
```
|
| 225 |
+
|
| 226 |
+
## License
|
| 227 |
+
|
| 228 |
+
Apache 2.0
|
| 229 |
+
|
| 230 |
+
## Links
|
| 231 |
+
|
| 232 |
+
- 📚 [SAM2 Documentation](https://huggingface.co/docs/transformers/model_doc/sam2_video)
|
| 233 |
+
- 🤗 [Model on Hugging Face](https://huggingface.co/facebook/sam2.1-hiera-tiny)
|
| 234 |
+
- 📄 [Research Paper](https://arxiv.org/abs/2408.00714)
|
| 235 |
+
- 💻 [Original Repository](https://github.com/facebookresearch/segment-anything-2)
|
| 236 |
+
|
| 237 |
+
---
|
| 238 |
+
|
| 239 |
+
Built with ❤️ using [Transformers](https://github.com/huggingface/transformers) and [Gradio](https://gradio.app)
|
| 240 |
+
|
api_example.py
ADDED
|
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Example script showing how to use the SAM2 Video Background Remover API.
|
| 3 |
+
|
| 4 |
+
This script demonstrates various use cases:
|
| 5 |
+
1. Simple single object tracking
|
| 6 |
+
2. Multiple object tracking
|
| 7 |
+
3. Refined segmentation with background points
|
| 8 |
+
4. Batch processing multiple videos
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
from gradio_client import Client
|
| 12 |
+
import json
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def example_1_simple_tracking():
|
| 17 |
+
"""
|
| 18 |
+
Example 1: Track a single object (e.g., person, ball, car)
|
| 19 |
+
"""
|
| 20 |
+
print("=" * 60)
|
| 21 |
+
print("Example 1: Simple Single Object Tracking")
|
| 22 |
+
print("=" * 60)
|
| 23 |
+
|
| 24 |
+
# Connect to your Space
|
| 25 |
+
client = Client("furbola/chaskick")
|
| 26 |
+
|
| 27 |
+
# Simple annotation: click on the center of your object in the first frame
|
| 28 |
+
annotations = [
|
| 29 |
+
{
|
| 30 |
+
"frame_idx": 0, # First frame
|
| 31 |
+
"object_id": 1, # First object
|
| 32 |
+
"points": [[320, 240]], # x, y coordinates of the object center
|
| 33 |
+
"labels": [1] # 1 = this is a foreground point
|
| 34 |
+
}
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
# Process the video
|
| 38 |
+
result = client.predict(
|
| 39 |
+
video_file="./input_video.mp4",
|
| 40 |
+
annotations_json=json.dumps(annotations),
|
| 41 |
+
remove_background=True,
|
| 42 |
+
max_frames=None, # Process all frames
|
| 43 |
+
api_name="/segment_video_api"
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
print(f"✅ Output saved to: {result}")
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def example_2_multi_object_tracking():
|
| 50 |
+
"""
|
| 51 |
+
Example 2: Track multiple objects simultaneously
|
| 52 |
+
Useful for: tracking player + ball, multiple people, etc.
|
| 53 |
+
"""
|
| 54 |
+
print("\n" + "=" * 60)
|
| 55 |
+
print("Example 2: Multi-Object Tracking")
|
| 56 |
+
print("=" * 60)
|
| 57 |
+
|
| 58 |
+
client = Client("furbola/chaskick")
|
| 59 |
+
|
| 60 |
+
annotations = [
|
| 61 |
+
# Object 1: Player
|
| 62 |
+
{
|
| 63 |
+
"frame_idx": 0,
|
| 64 |
+
"object_id": 1,
|
| 65 |
+
"points": [[320, 240]],
|
| 66 |
+
"labels": [1]
|
| 67 |
+
},
|
| 68 |
+
# Object 2: Ball
|
| 69 |
+
{
|
| 70 |
+
"frame_idx": 0,
|
| 71 |
+
"object_id": 2,
|
| 72 |
+
"points": [[500, 300]],
|
| 73 |
+
"labels": [1]
|
| 74 |
+
},
|
| 75 |
+
# Object 3: Another player
|
| 76 |
+
{
|
| 77 |
+
"frame_idx": 0,
|
| 78 |
+
"object_id": 3,
|
| 79 |
+
"points": [[150, 200]],
|
| 80 |
+
"labels": [1]
|
| 81 |
+
}
|
| 82 |
+
]
|
| 83 |
+
|
| 84 |
+
result = client.predict(
|
| 85 |
+
video_file="./soccer_match.mp4",
|
| 86 |
+
annotations_json=json.dumps(annotations),
|
| 87 |
+
remove_background=True,
|
| 88 |
+
max_frames=300, # Limit to 300 frames for speed
|
| 89 |
+
api_name="/segment_video_api"
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
print(f"✅ Tracked 3 objects! Output: {result}")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def example_3_refined_segmentation():
|
| 96 |
+
"""
|
| 97 |
+
Example 3: Use both foreground AND background points for better accuracy
|
| 98 |
+
Useful when: object is complex, background is similar color, etc.
|
| 99 |
+
"""
|
| 100 |
+
print("\n" + "=" * 60)
|
| 101 |
+
print("Example 3: Refined Segmentation with Negative Points")
|
| 102 |
+
print("=" * 60)
|
| 103 |
+
|
| 104 |
+
client = Client("furbola/chaskick")
|
| 105 |
+
|
| 106 |
+
annotations = [
|
| 107 |
+
{
|
| 108 |
+
"frame_idx": 0,
|
| 109 |
+
"object_id": 1,
|
| 110 |
+
"points": [
|
| 111 |
+
[320, 240], # ✅ Point ON the person's body
|
| 112 |
+
[350, 250], # ✅ Another point on the person
|
| 113 |
+
[280, 220], # ✅ Third point for better coverage
|
| 114 |
+
[100, 100], # ❌ Point on the BACKGROUND to exclude
|
| 115 |
+
[600, 400] # ❌ Another background point
|
| 116 |
+
],
|
| 117 |
+
"labels": [
|
| 118 |
+
1, # foreground
|
| 119 |
+
1, # foreground
|
| 120 |
+
1, # foreground
|
| 121 |
+
0, # background (exclude this area)
|
| 122 |
+
0 # background (exclude this area)
|
| 123 |
+
]
|
| 124 |
+
}
|
| 125 |
+
]
|
| 126 |
+
|
| 127 |
+
result = client.predict(
|
| 128 |
+
video_file="./person_video.mp4",
|
| 129 |
+
annotations_json=json.dumps(annotations),
|
| 130 |
+
remove_background=True,
|
| 131 |
+
max_frames=None,
|
| 132 |
+
api_name="/segment_video_api"
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
print(f"✅ Refined segmentation complete: {result}")
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def example_4_temporal_annotations():
|
| 139 |
+
"""
|
| 140 |
+
Example 4: Add annotations on multiple frames
|
| 141 |
+
Useful when: object changes appearance, camera cuts, occlusions
|
| 142 |
+
"""
|
| 143 |
+
print("\n" + "=" * 60)
|
| 144 |
+
print("Example 4: Multi-Frame Annotations")
|
| 145 |
+
print("=" * 60)
|
| 146 |
+
|
| 147 |
+
client = Client("furbola/chaskick")
|
| 148 |
+
|
| 149 |
+
annotations = [
|
| 150 |
+
# Annotate frame 0
|
| 151 |
+
{
|
| 152 |
+
"frame_idx": 0,
|
| 153 |
+
"object_id": 1,
|
| 154 |
+
"points": [[320, 240]],
|
| 155 |
+
"labels": [1]
|
| 156 |
+
},
|
| 157 |
+
# Annotate frame 50 (object might have moved or changed)
|
| 158 |
+
{
|
| 159 |
+
"frame_idx": 50,
|
| 160 |
+
"object_id": 1,
|
| 161 |
+
"points": [[450, 300]],
|
| 162 |
+
"labels": [1]
|
| 163 |
+
},
|
| 164 |
+
# Annotate frame 100 (after a camera cut or scene change)
|
| 165 |
+
{
|
| 166 |
+
"frame_idx": 100,
|
| 167 |
+
"object_id": 1,
|
| 168 |
+
"points": [[200, 180]],
|
| 169 |
+
"labels": [1]
|
| 170 |
+
}
|
| 171 |
+
]
|
| 172 |
+
|
| 173 |
+
result = client.predict(
|
| 174 |
+
video_file="./long_video.mp4",
|
| 175 |
+
annotations_json=json.dumps(annotations),
|
| 176 |
+
remove_background=True,
|
| 177 |
+
max_frames=None,
|
| 178 |
+
api_name="/segment_video_api"
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
print(f"✅ Multi-frame tracking complete: {result}")
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def example_5_batch_processing():
|
| 185 |
+
"""
|
| 186 |
+
Example 5: Process multiple videos in batch
|
| 187 |
+
"""
|
| 188 |
+
print("\n" + "=" * 60)
|
| 189 |
+
print("Example 5: Batch Processing Multiple Videos")
|
| 190 |
+
print("=" * 60)
|
| 191 |
+
|
| 192 |
+
client = Client("furbola/chaskick")
|
| 193 |
+
|
| 194 |
+
# List of videos to process
|
| 195 |
+
videos = [
|
| 196 |
+
{"path": "./video1.mp4", "point": [320, 240]},
|
| 197 |
+
{"path": "./video2.mp4", "point": [400, 300]},
|
| 198 |
+
{"path": "./video3.mp4", "point": [250, 200]},
|
| 199 |
+
]
|
| 200 |
+
|
| 201 |
+
results = []
|
| 202 |
+
|
| 203 |
+
for i, video in enumerate(videos, 1):
|
| 204 |
+
print(f"\nProcessing video {i}/{len(videos)}: {video['path']}")
|
| 205 |
+
|
| 206 |
+
annotations = [{
|
| 207 |
+
"frame_idx": 0,
|
| 208 |
+
"object_id": 1,
|
| 209 |
+
"points": [video['point']],
|
| 210 |
+
"labels": [1]
|
| 211 |
+
}]
|
| 212 |
+
|
| 213 |
+
try:
|
| 214 |
+
result = client.predict(
|
| 215 |
+
video_file=video['path'],
|
| 216 |
+
annotations_json=json.dumps(annotations),
|
| 217 |
+
remove_background=True,
|
| 218 |
+
max_frames=200, # Limit frames for faster batch processing
|
| 219 |
+
api_name="/segment_video_api"
|
| 220 |
+
)
|
| 221 |
+
results.append({"input": video['path'], "output": result, "status": "✅"})
|
| 222 |
+
print(f" ✅ Success: {result}")
|
| 223 |
+
except Exception as e:
|
| 224 |
+
results.append({"input": video['path'], "output": None, "status": f"❌ {str(e)}"})
|
| 225 |
+
print(f" ❌ Failed: {e}")
|
| 226 |
+
|
| 227 |
+
print("\n" + "=" * 60)
|
| 228 |
+
print("Batch Processing Summary:")
|
| 229 |
+
print("=" * 60)
|
| 230 |
+
for r in results:
|
| 231 |
+
print(f"{r['status']} {r['input']} -> {r['output']}")
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
def example_6_highlight_mode():
|
| 235 |
+
"""
|
| 236 |
+
Example 6: Highlight objects instead of removing background
|
| 237 |
+
Useful for: visualization, debugging, object detection demos
|
| 238 |
+
"""
|
| 239 |
+
print("\n" + "=" * 60)
|
| 240 |
+
print("Example 6: Highlight Mode (Keep Background)")
|
| 241 |
+
print("=" * 60)
|
| 242 |
+
|
| 243 |
+
client = Client("furbola/chaskick")
|
| 244 |
+
|
| 245 |
+
annotations = [{
|
| 246 |
+
"frame_idx": 0,
|
| 247 |
+
"object_id": 1,
|
| 248 |
+
"points": [[320, 240]],
|
| 249 |
+
"labels": [1]
|
| 250 |
+
}]
|
| 251 |
+
|
| 252 |
+
result = client.predict(
|
| 253 |
+
video_file="./input_video.mp4",
|
| 254 |
+
annotations_json=json.dumps(annotations),
|
| 255 |
+
remove_background=False, # Keep background, just highlight the object
|
| 256 |
+
max_frames=None,
|
| 257 |
+
api_name="/segment_video_api"
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
print(f"✅ Object highlighted: {result}")
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
def example_7_find_coordinates():
|
| 264 |
+
"""
|
| 265 |
+
Example 7: Helper to find coordinates in a video
|
| 266 |
+
Opens the first frame so you can identify x,y coordinates
|
| 267 |
+
"""
|
| 268 |
+
print("\n" + "=" * 60)
|
| 269 |
+
print("Example 7: Find Coordinates Helper")
|
| 270 |
+
print("=" * 60)
|
| 271 |
+
|
| 272 |
+
import cv2
|
| 273 |
+
|
| 274 |
+
video_path = "./input_video.mp4"
|
| 275 |
+
|
| 276 |
+
# Read first frame
|
| 277 |
+
cap = cv2.VideoCapture(video_path)
|
| 278 |
+
ret, frame = cap.read()
|
| 279 |
+
cap.release()
|
| 280 |
+
|
| 281 |
+
if ret:
|
| 282 |
+
# Save first frame
|
| 283 |
+
cv2.imwrite("first_frame.jpg", frame)
|
| 284 |
+
print(f"✅ Saved first frame to: first_frame.jpg")
|
| 285 |
+
print(f" Video size: {frame.shape[1]}x{frame.shape[0]} (width x height)")
|
| 286 |
+
print(f" Open this image and note the x,y coordinates of your object")
|
| 287 |
+
print(f" Then use those coordinates in your annotation!")
|
| 288 |
+
else:
|
| 289 |
+
print("❌ Could not read video")
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
# ============================================================================
|
| 293 |
+
# UTILITY FUNCTIONS
|
| 294 |
+
# ============================================================================
|
| 295 |
+
|
| 296 |
+
def create_annotation(frame_idx, object_id, points, labels=None):
|
| 297 |
+
"""
|
| 298 |
+
Helper function to create annotation objects.
|
| 299 |
+
|
| 300 |
+
Args:
|
| 301 |
+
frame_idx: Frame number (0 = first frame)
|
| 302 |
+
object_id: Unique object ID (1, 2, 3, ...)
|
| 303 |
+
points: List of [x, y] coordinates, e.g., [[320, 240]]
|
| 304 |
+
labels: List of labels (1=foreground, 0=background). Defaults to all 1s.
|
| 305 |
+
|
| 306 |
+
Returns:
|
| 307 |
+
Dictionary with annotation
|
| 308 |
+
"""
|
| 309 |
+
if labels is None:
|
| 310 |
+
labels = [1] * len(points)
|
| 311 |
+
|
| 312 |
+
return {
|
| 313 |
+
"frame_idx": frame_idx,
|
| 314 |
+
"object_id": object_id,
|
| 315 |
+
"points": points,
|
| 316 |
+
"labels": labels
|
| 317 |
+
}
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
def load_annotations_from_file(json_file):
|
| 321 |
+
"""Load annotations from a JSON file."""
|
| 322 |
+
with open(json_file, 'r') as f:
|
| 323 |
+
return json.load(f)
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
def save_annotations_to_file(annotations, json_file):
|
| 327 |
+
"""Save annotations to a JSON file."""
|
| 328 |
+
with open(json_file, 'w') as f:
|
| 329 |
+
json.dump(annotations, f, indent=2)
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
# ============================================================================
|
| 333 |
+
# MAIN
|
| 334 |
+
# ============================================================================
|
| 335 |
+
|
| 336 |
+
if __name__ == "__main__":
|
| 337 |
+
print("""
|
| 338 |
+
╔════════════════════════════════════════════════════════════╗
|
| 339 |
+
║ SAM2 Video Background Remover - API Examples ║
|
| 340 |
+
║ Choose an example to run or uncomment in the code ║
|
| 341 |
+
╚════════════════════════════════════════════════════════════╝
|
| 342 |
+
""")
|
| 343 |
+
|
| 344 |
+
# Uncomment the examples you want to run:
|
| 345 |
+
|
| 346 |
+
# example_1_simple_tracking()
|
| 347 |
+
# example_2_multi_object_tracking()
|
| 348 |
+
# example_3_refined_segmentation()
|
| 349 |
+
# example_4_temporal_annotations()
|
| 350 |
+
# example_5_batch_processing()
|
| 351 |
+
# example_6_highlight_mode()
|
| 352 |
+
# example_7_find_coordinates()
|
| 353 |
+
|
| 354 |
+
print("\n✅ Done! Check the output files.")
|
| 355 |
+
print("\n🎉 Your Space: https://huggingface.co/spaces/furbola/chaskick")
|
| 356 |
+
|
app.py
ADDED
|
@@ -0,0 +1,540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
SAM2 Video Segmentation Space
|
| 3 |
+
Removes background from videos by tracking specified objects.
|
| 4 |
+
Provides both Gradio UI and API endpoints.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import torch
|
| 9 |
+
import numpy as np
|
| 10 |
+
import cv2
|
| 11 |
+
import tempfile
|
| 12 |
+
import os
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
from typing import List, Tuple, Optional, Dict, Any
|
| 15 |
+
from transformers import Sam2VideoModel, Sam2VideoProcessor
|
| 16 |
+
from transformers.video_utils import load_video
|
| 17 |
+
from PIL import Image
|
| 18 |
+
import json
|
| 19 |
+
|
| 20 |
+
# Global model variables
|
| 21 |
+
MODEL_NAME = "facebook/sam2.1-hiera-tiny" # Options: tiny, small, base-plus, large
|
| 22 |
+
device = None
|
| 23 |
+
model = None
|
| 24 |
+
processor = None
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def initialize_model():
|
| 28 |
+
"""Initialize SAM2 model and processor."""
|
| 29 |
+
global device, model, processor
|
| 30 |
+
|
| 31 |
+
# Determine device
|
| 32 |
+
if torch.cuda.is_available():
|
| 33 |
+
device = torch.device("cuda")
|
| 34 |
+
dtype = torch.float16
|
| 35 |
+
elif torch.backends.mps.is_available():
|
| 36 |
+
device = torch.device("mps")
|
| 37 |
+
dtype = torch.float32
|
| 38 |
+
else:
|
| 39 |
+
device = torch.device("cpu")
|
| 40 |
+
dtype = torch.float32
|
| 41 |
+
|
| 42 |
+
print(f"Loading SAM2 model on {device}...")
|
| 43 |
+
|
| 44 |
+
# Load model and processor
|
| 45 |
+
model = Sam2VideoModel.from_pretrained(MODEL_NAME).to(device, dtype=dtype)
|
| 46 |
+
processor = Sam2VideoProcessor.from_pretrained(MODEL_NAME)
|
| 47 |
+
|
| 48 |
+
print("Model loaded successfully!")
|
| 49 |
+
return device, model, processor
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def extract_frames_from_video(video_path: str, max_frames: Optional[int] = None) -> Tuple[List[Image.Image], Dict]:
|
| 53 |
+
"""Extract frames from video file."""
|
| 54 |
+
video_frames, info = load_video(video_path)
|
| 55 |
+
|
| 56 |
+
if max_frames and len(video_frames) > max_frames:
|
| 57 |
+
# Sample frames uniformly
|
| 58 |
+
indices = np.linspace(0, len(video_frames) - 1, max_frames, dtype=int)
|
| 59 |
+
video_frames = [video_frames[i] for i in indices]
|
| 60 |
+
|
| 61 |
+
return video_frames, info
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def create_output_video(
|
| 65 |
+
video_frames: List[Image.Image],
|
| 66 |
+
masks: Dict[int, torch.Tensor],
|
| 67 |
+
output_path: str,
|
| 68 |
+
fps: float = 30.0,
|
| 69 |
+
remove_background: bool = True
|
| 70 |
+
) -> str:
|
| 71 |
+
"""
|
| 72 |
+
Create output video with segmented objects.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
video_frames: Original video frames
|
| 76 |
+
masks: Dictionary mapping frame_idx to mask tensors
|
| 77 |
+
output_path: Path to save output video
|
| 78 |
+
fps: Frames per second
|
| 79 |
+
remove_background: If True, remove background; if False, highlight objects
|
| 80 |
+
"""
|
| 81 |
+
if not masks:
|
| 82 |
+
raise ValueError("No masks provided")
|
| 83 |
+
|
| 84 |
+
# Get first frame to determine dimensions
|
| 85 |
+
first_frame = np.array(video_frames[0])
|
| 86 |
+
height, width = first_frame.shape[:2]
|
| 87 |
+
|
| 88 |
+
# Initialize video writer
|
| 89 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 90 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 91 |
+
|
| 92 |
+
for frame_idx, frame_pil in enumerate(video_frames):
|
| 93 |
+
frame = np.array(frame_pil)
|
| 94 |
+
|
| 95 |
+
if frame_idx in masks:
|
| 96 |
+
mask = masks[frame_idx].cpu().numpy()
|
| 97 |
+
|
| 98 |
+
# Handle different mask shapes
|
| 99 |
+
if mask.ndim == 4: # (batch, num_objects, H, W)
|
| 100 |
+
mask = mask[0] # Take first batch
|
| 101 |
+
if mask.ndim == 3: # (num_objects, H, W)
|
| 102 |
+
# Combine all object masks
|
| 103 |
+
mask = mask.max(axis=0)
|
| 104 |
+
|
| 105 |
+
# Resize mask to frame size if needed
|
| 106 |
+
if mask.shape != (height, width):
|
| 107 |
+
mask = cv2.resize(mask, (width, height), interpolation=cv2.INTER_NEAREST)
|
| 108 |
+
|
| 109 |
+
# Convert to binary mask
|
| 110 |
+
mask_binary = (mask > 0.5).astype(np.uint8)
|
| 111 |
+
|
| 112 |
+
if remove_background:
|
| 113 |
+
# Keep only the tracked objects (remove background)
|
| 114 |
+
if frame.shape[2] == 3: # RGB
|
| 115 |
+
# Create RGBA with alpha channel
|
| 116 |
+
result = np.zeros((height, width, 4), dtype=np.uint8)
|
| 117 |
+
result[:, :, :3] = frame
|
| 118 |
+
result[:, :, 3] = mask_binary * 255
|
| 119 |
+
|
| 120 |
+
# Convert back to RGB with black background
|
| 121 |
+
background = np.zeros_like(frame)
|
| 122 |
+
mask_3d = np.repeat(mask_binary[:, :, np.newaxis], 3, axis=2)
|
| 123 |
+
result_rgb = frame * mask_3d + background * (1 - mask_3d)
|
| 124 |
+
frame = result_rgb.astype(np.uint8)
|
| 125 |
+
else:
|
| 126 |
+
# Highlight tracked objects (overlay colored mask)
|
| 127 |
+
overlay = frame.copy()
|
| 128 |
+
overlay[mask_binary > 0] = [0, 255, 0] # Green overlay
|
| 129 |
+
frame = cv2.addWeighted(frame, 0.7, overlay, 0.3, 0)
|
| 130 |
+
|
| 131 |
+
# Convert RGB to BGR for OpenCV
|
| 132 |
+
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
| 133 |
+
out.write(frame_bgr)
|
| 134 |
+
|
| 135 |
+
out.release()
|
| 136 |
+
return output_path
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def segment_video(
|
| 140 |
+
video_path: str,
|
| 141 |
+
annotations: List[Dict[str, Any]],
|
| 142 |
+
remove_background: bool = True,
|
| 143 |
+
max_frames: Optional[int] = None
|
| 144 |
+
) -> str:
|
| 145 |
+
"""
|
| 146 |
+
Main function to segment video based on annotations.
|
| 147 |
+
|
| 148 |
+
Args:
|
| 149 |
+
video_path: Path to input video
|
| 150 |
+
annotations: List of annotation dictionaries with format:
|
| 151 |
+
[
|
| 152 |
+
{
|
| 153 |
+
"frame_idx": 0,
|
| 154 |
+
"object_id": 1,
|
| 155 |
+
"points": [[x1, y1], [x2, y2], ...],
|
| 156 |
+
"labels": [1, 1, ...] # 1 for foreground, 0 for background
|
| 157 |
+
},
|
| 158 |
+
...
|
| 159 |
+
]
|
| 160 |
+
remove_background: If True, remove background; if False, highlight objects
|
| 161 |
+
max_frames: Maximum number of frames to process (None = all frames)
|
| 162 |
+
|
| 163 |
+
Returns:
|
| 164 |
+
Path to output video file
|
| 165 |
+
"""
|
| 166 |
+
global device, model, processor
|
| 167 |
+
|
| 168 |
+
if model is None:
|
| 169 |
+
initialize_model()
|
| 170 |
+
|
| 171 |
+
# Load video frames
|
| 172 |
+
print("Loading video frames...")
|
| 173 |
+
video_frames, video_info = extract_frames_from_video(video_path, max_frames)
|
| 174 |
+
fps = video_info.get('fps', 30.0)
|
| 175 |
+
|
| 176 |
+
print(f"Processing {len(video_frames)} frames at {fps} FPS")
|
| 177 |
+
|
| 178 |
+
# Initialize inference session
|
| 179 |
+
dtype = torch.float16 if device.type == "cuda" else torch.float32
|
| 180 |
+
inference_session = processor.init_video_session(
|
| 181 |
+
video=video_frames,
|
| 182 |
+
inference_device=device,
|
| 183 |
+
dtype=dtype,
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
# Add annotations to inference session
|
| 187 |
+
print("Adding annotations...")
|
| 188 |
+
for ann in annotations:
|
| 189 |
+
frame_idx = ann["frame_idx"]
|
| 190 |
+
obj_id = ann["object_id"]
|
| 191 |
+
points = ann.get("points", [])
|
| 192 |
+
labels = ann.get("labels", [1] * len(points))
|
| 193 |
+
|
| 194 |
+
if points:
|
| 195 |
+
# Format points for processor: [[[[x, y], [x, y], ...]]]
|
| 196 |
+
formatted_points = [[points]]
|
| 197 |
+
formatted_labels = [[labels]]
|
| 198 |
+
|
| 199 |
+
processor.add_inputs_to_inference_session(
|
| 200 |
+
inference_session=inference_session,
|
| 201 |
+
frame_idx=frame_idx,
|
| 202 |
+
obj_ids=obj_id,
|
| 203 |
+
input_points=formatted_points,
|
| 204 |
+
input_labels=formatted_labels,
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
# Run inference on this frame
|
| 208 |
+
outputs = model(
|
| 209 |
+
inference_session=inference_session,
|
| 210 |
+
frame_idx=frame_idx,
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
# Propagate through all frames
|
| 214 |
+
print("Propagating masks through video...")
|
| 215 |
+
video_segments = {}
|
| 216 |
+
|
| 217 |
+
for sam2_output in model.propagate_in_video_iterator(inference_session):
|
| 218 |
+
video_res_masks = processor.post_process_masks(
|
| 219 |
+
[sam2_output.pred_masks],
|
| 220 |
+
original_sizes=[[inference_session.video_height, inference_session.video_width]],
|
| 221 |
+
binarize=False
|
| 222 |
+
)[0]
|
| 223 |
+
video_segments[sam2_output.frame_idx] = video_res_masks
|
| 224 |
+
|
| 225 |
+
print(f"Generated masks for {len(video_segments)} frames")
|
| 226 |
+
|
| 227 |
+
# Create output video
|
| 228 |
+
output_path = tempfile.mktemp(suffix=".mp4")
|
| 229 |
+
print("Creating output video...")
|
| 230 |
+
create_output_video(video_frames, video_segments, output_path, fps, remove_background)
|
| 231 |
+
|
| 232 |
+
print(f"Output video saved to: {output_path}")
|
| 233 |
+
return output_path
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
# ============================================================================
|
| 237 |
+
# GRADIO INTERFACE
|
| 238 |
+
# ============================================================================
|
| 239 |
+
|
| 240 |
+
def gradio_segment_video(
|
| 241 |
+
video_file,
|
| 242 |
+
annotation_json: str,
|
| 243 |
+
remove_bg: bool = True,
|
| 244 |
+
max_frames: Optional[int] = None
|
| 245 |
+
):
|
| 246 |
+
"""
|
| 247 |
+
Gradio wrapper for video segmentation.
|
| 248 |
+
|
| 249 |
+
Args:
|
| 250 |
+
video_file: Uploaded video file
|
| 251 |
+
annotation_json: JSON string with annotations
|
| 252 |
+
remove_bg: Whether to remove background
|
| 253 |
+
max_frames: Maximum frames to process
|
| 254 |
+
"""
|
| 255 |
+
try:
|
| 256 |
+
# Parse annotations
|
| 257 |
+
annotations = json.loads(annotation_json)
|
| 258 |
+
|
| 259 |
+
if not isinstance(annotations, list):
|
| 260 |
+
return None, "Error: Annotations must be a list of objects"
|
| 261 |
+
|
| 262 |
+
# Process video
|
| 263 |
+
output_path = segment_video(
|
| 264 |
+
video_path=video_file,
|
| 265 |
+
annotations=annotations,
|
| 266 |
+
remove_background=remove_bg,
|
| 267 |
+
max_frames=max_frames
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
return output_path, "✅ Video processed successfully!"
|
| 271 |
+
|
| 272 |
+
except json.JSONDecodeError as e:
|
| 273 |
+
return None, f"❌ JSON parsing error: {str(e)}"
|
| 274 |
+
except Exception as e:
|
| 275 |
+
return None, f"❌ Error: {str(e)}"
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
def gradio_simple_segment(
|
| 279 |
+
video_file,
|
| 280 |
+
point_x: int,
|
| 281 |
+
point_y: int,
|
| 282 |
+
frame_idx: int = 0,
|
| 283 |
+
remove_bg: bool = True,
|
| 284 |
+
max_frames: Optional[int] = 300
|
| 285 |
+
):
|
| 286 |
+
"""
|
| 287 |
+
Simple Gradio interface with single point annotation.
|
| 288 |
+
"""
|
| 289 |
+
try:
|
| 290 |
+
# Create simple annotation
|
| 291 |
+
annotations = [{
|
| 292 |
+
"frame_idx": frame_idx,
|
| 293 |
+
"object_id": 1,
|
| 294 |
+
"points": [[point_x, point_y]],
|
| 295 |
+
"labels": [1]
|
| 296 |
+
}]
|
| 297 |
+
|
| 298 |
+
# Process video
|
| 299 |
+
output_path = segment_video(
|
| 300 |
+
video_path=video_file,
|
| 301 |
+
annotations=annotations,
|
| 302 |
+
remove_background=remove_bg,
|
| 303 |
+
max_frames=max_frames
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
return output_path, f"✅ Video processed! Tracked from point ({point_x}, {point_y}) on frame {frame_idx}"
|
| 307 |
+
|
| 308 |
+
except Exception as e:
|
| 309 |
+
return None, f"❌ Error: {str(e)}"
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
# ============================================================================
|
| 313 |
+
# API ENDPOINTS (via Gradio API)
|
| 314 |
+
# ============================================================================
|
| 315 |
+
|
| 316 |
+
def api_segment_video(video_file, annotations_json: str, remove_background: bool = True, max_frames: int = None):
|
| 317 |
+
"""
|
| 318 |
+
API endpoint for video segmentation.
|
| 319 |
+
Can be called via gradio_client or direct HTTP requests.
|
| 320 |
+
"""
|
| 321 |
+
annotations = json.loads(annotations_json)
|
| 322 |
+
output_path = segment_video(video_file, annotations, remove_background, max_frames)
|
| 323 |
+
return output_path
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
# ============================================================================
|
| 327 |
+
# CREATE GRADIO APP
|
| 328 |
+
# ============================================================================
|
| 329 |
+
|
| 330 |
+
def create_interface():
|
| 331 |
+
"""Create the Gradio interface."""
|
| 332 |
+
|
| 333 |
+
# Initialize model
|
| 334 |
+
initialize_model()
|
| 335 |
+
|
| 336 |
+
# Create tabs for different interfaces
|
| 337 |
+
with gr.Blocks(title="SAM2 Video Segmentation - Remove Background") as app:
|
| 338 |
+
gr.Markdown("""
|
| 339 |
+
# 🎥 SAM2 Video Background Remover
|
| 340 |
+
|
| 341 |
+
Remove backgrounds from videos by tracking objects. Uses Meta's Segment Anything Model 2 (SAM2).
|
| 342 |
+
|
| 343 |
+
**Two ways to use this:**
|
| 344 |
+
1. **Simple Mode**: Click on an object in the first frame
|
| 345 |
+
2. **Advanced Mode**: Provide detailed JSON annotations
|
| 346 |
+
3. **API Mode**: Use the API endpoint programmatically
|
| 347 |
+
""")
|
| 348 |
+
|
| 349 |
+
with gr.Tabs():
|
| 350 |
+
# ===================== SIMPLE MODE =====================
|
| 351 |
+
with gr.Tab("Simple Mode"):
|
| 352 |
+
gr.Markdown("""
|
| 353 |
+
### Quick Start
|
| 354 |
+
1. Upload a video
|
| 355 |
+
2. Specify the coordinates of the object you want to track
|
| 356 |
+
3. Click "Process Video"
|
| 357 |
+
|
| 358 |
+
**Tip**: Open your video in an image viewer to find the x,y coordinates of your target object in the first frame.
|
| 359 |
+
""")
|
| 360 |
+
|
| 361 |
+
with gr.Row():
|
| 362 |
+
with gr.Column():
|
| 363 |
+
simple_video_input = gr.Video(label="Upload Video")
|
| 364 |
+
|
| 365 |
+
with gr.Row():
|
| 366 |
+
point_x_input = gr.Number(label="Point X", value=320, precision=0)
|
| 367 |
+
point_y_input = gr.Number(label="Point Y", value=240, precision=0)
|
| 368 |
+
|
| 369 |
+
frame_idx_input = gr.Number(label="Frame Index", value=0, precision=0,
|
| 370 |
+
info="Which frame to annotate (usually 0 for first frame)")
|
| 371 |
+
|
| 372 |
+
remove_bg_simple = gr.Checkbox(label="Remove Background", value=True,
|
| 373 |
+
info="If checked, removes background. If unchecked, highlights object.")
|
| 374 |
+
|
| 375 |
+
max_frames_simple = gr.Number(label="Max Frames (optional)", value=300, precision=0,
|
| 376 |
+
info="Limit frames for faster processing. Leave at 0 for all frames.")
|
| 377 |
+
|
| 378 |
+
simple_btn = gr.Button("🎬 Process Video", variant="primary")
|
| 379 |
+
|
| 380 |
+
with gr.Column():
|
| 381 |
+
simple_output_video = gr.Video(label="Output Video")
|
| 382 |
+
simple_status = gr.Textbox(label="Status", lines=3)
|
| 383 |
+
|
| 384 |
+
simple_btn.click(
|
| 385 |
+
fn=gradio_simple_segment,
|
| 386 |
+
inputs=[simple_video_input, point_x_input, point_y_input, frame_idx_input,
|
| 387 |
+
remove_bg_simple, max_frames_simple],
|
| 388 |
+
outputs=[simple_output_video, simple_status]
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
gr.Markdown("""
|
| 392 |
+
### Example:
|
| 393 |
+
For a 640x480 video with a person in the center, try: X=320, Y=240, Frame=0
|
| 394 |
+
""")
|
| 395 |
+
|
| 396 |
+
# ===================== ADVANCED MODE =====================
|
| 397 |
+
with gr.Tab("Advanced Mode (JSON)"):
|
| 398 |
+
gr.Markdown("""
|
| 399 |
+
### Advanced Annotations
|
| 400 |
+
Provide detailed JSON annotations for multiple objects and frames.
|
| 401 |
+
|
| 402 |
+
**JSON Format:**
|
| 403 |
+
```json
|
| 404 |
+
[
|
| 405 |
+
{
|
| 406 |
+
"frame_idx": 0,
|
| 407 |
+
"object_id": 1,
|
| 408 |
+
"points": [[x1, y1], [x2, y2]],
|
| 409 |
+
"labels": [1, 1]
|
| 410 |
+
}
|
| 411 |
+
]
|
| 412 |
+
```
|
| 413 |
+
|
| 414 |
+
- `frame_idx`: Frame number to annotate
|
| 415 |
+
- `object_id`: Unique ID for each object (1, 2, 3, ...)
|
| 416 |
+
- `points`: List of [x, y] coordinates
|
| 417 |
+
- `labels`: 1 for foreground point, 0 for background point
|
| 418 |
+
""")
|
| 419 |
+
|
| 420 |
+
with gr.Row():
|
| 421 |
+
with gr.Column():
|
| 422 |
+
adv_video_input = gr.Video(label="Upload Video")
|
| 423 |
+
|
| 424 |
+
adv_annotation_input = gr.Textbox(
|
| 425 |
+
label="Annotations (JSON)",
|
| 426 |
+
lines=10,
|
| 427 |
+
value='''[
|
| 428 |
+
{
|
| 429 |
+
"frame_idx": 0,
|
| 430 |
+
"object_id": 1,
|
| 431 |
+
"points": [[320, 240]],
|
| 432 |
+
"labels": [1]
|
| 433 |
+
}
|
| 434 |
+
]''',
|
| 435 |
+
placeholder="Enter JSON annotations here..."
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
remove_bg_adv = gr.Checkbox(label="Remove Background", value=True)
|
| 439 |
+
max_frames_adv = gr.Number(label="Max Frames (0 = all)", value=0, precision=0)
|
| 440 |
+
|
| 441 |
+
adv_btn = gr.Button("🎬 Process Video", variant="primary")
|
| 442 |
+
|
| 443 |
+
with gr.Column():
|
| 444 |
+
adv_output_video = gr.Video(label="Output Video")
|
| 445 |
+
adv_status = gr.Textbox(label="Status", lines=3)
|
| 446 |
+
|
| 447 |
+
adv_btn.click(
|
| 448 |
+
fn=gradio_segment_video,
|
| 449 |
+
inputs=[adv_video_input, adv_annotation_input, remove_bg_adv, max_frames_adv],
|
| 450 |
+
outputs=[adv_output_video, adv_status]
|
| 451 |
+
)
|
| 452 |
+
|
| 453 |
+
# ===================== API INFO =====================
|
| 454 |
+
with gr.Tab("API Documentation"):
|
| 455 |
+
gr.Markdown("""
|
| 456 |
+
## 📡 API Usage
|
| 457 |
+
|
| 458 |
+
This Space exposes an API that you can call programmatically.
|
| 459 |
+
|
| 460 |
+
### Using Python with `gradio_client`
|
| 461 |
+
|
| 462 |
+
```python
|
| 463 |
+
from gradio_client import Client
|
| 464 |
+
import json
|
| 465 |
+
|
| 466 |
+
# Connect to the Space
|
| 467 |
+
client = Client("YOUR_USERNAME/YOUR_SPACE_NAME")
|
| 468 |
+
|
| 469 |
+
# Define annotations
|
| 470 |
+
annotations = [
|
| 471 |
+
{
|
| 472 |
+
"frame_idx": 0,
|
| 473 |
+
"object_id": 1,
|
| 474 |
+
"points": [[320, 240]],
|
| 475 |
+
"labels": [1]
|
| 476 |
+
}
|
| 477 |
+
]
|
| 478 |
+
|
| 479 |
+
# Call the API
|
| 480 |
+
result = client.predict(
|
| 481 |
+
video_file="path/to/video.mp4",
|
| 482 |
+
annotations_json=json.dumps(annotations),
|
| 483 |
+
remove_background=True,
|
| 484 |
+
max_frames=300,
|
| 485 |
+
api_name="/segment_video_api"
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
print(f"Output video: {result}")
|
| 489 |
+
```
|
| 490 |
+
|
| 491 |
+
### Using cURL
|
| 492 |
+
|
| 493 |
+
```bash
|
| 494 |
+
curl -X POST https://YOUR_USERNAME-YOUR_SPACE_NAME.hf.space/api/predict \\
|
| 495 |
+
-H "Content-Type: application/json" \\
|
| 496 |
+
-F "data=@video.mp4" \\
|
| 497 |
+
-F 'annotations=[{"frame_idx":0,"object_id":1,"points":[[320,240]],"labels":[1]}]'
|
| 498 |
+
```
|
| 499 |
+
|
| 500 |
+
### Parameters
|
| 501 |
+
|
| 502 |
+
- **video_file**: Video file (required)
|
| 503 |
+
- **annotations_json**: JSON string with annotations (required)
|
| 504 |
+
- **remove_background**: Boolean (default: true)
|
| 505 |
+
- **max_frames**: Integer (default: null, processes all frames)
|
| 506 |
+
|
| 507 |
+
### Response
|
| 508 |
+
|
| 509 |
+
Returns the path to the processed video file.
|
| 510 |
+
""")
|
| 511 |
+
|
| 512 |
+
# Add API endpoint
|
| 513 |
+
api_interface = gr.Interface(
|
| 514 |
+
fn=api_segment_video,
|
| 515 |
+
inputs=[
|
| 516 |
+
gr.Video(label="Video File"),
|
| 517 |
+
gr.Textbox(label="Annotations JSON"),
|
| 518 |
+
gr.Checkbox(label="Remove Background", value=True),
|
| 519 |
+
gr.Number(label="Max Frames", value=None, precision=0)
|
| 520 |
+
],
|
| 521 |
+
outputs=gr.Video(label="Output Video"),
|
| 522 |
+
api_name="segment_video_api",
|
| 523 |
+
visible=False # Hidden from UI, only accessible via API
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
return app
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
# ============================================================================
|
| 530 |
+
# LAUNCH
|
| 531 |
+
# ============================================================================
|
| 532 |
+
|
| 533 |
+
if __name__ == "__main__":
|
| 534 |
+
app = create_interface()
|
| 535 |
+
app.launch(
|
| 536 |
+
server_name="0.0.0.0",
|
| 537 |
+
server_port=7860,
|
| 538 |
+
share=False
|
| 539 |
+
)
|
| 540 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers>=4.57.0
|
| 2 |
+
torch>=2.0.0
|
| 3 |
+
gradio>=4.0.0
|
| 4 |
+
opencv-python-headless>=4.8.0
|
| 5 |
+
numpy>=1.24.0
|
| 6 |
+
Pillow>=10.0.0
|
| 7 |
+
accelerate>=0.20.0
|
| 8 |
+
|