--- title: SAM2 Video Background Remover emoji: 🎥 colorFrom: blue colorTo: purple sdk: gradio sdk_version: 4.44.0 app_file: app.py pinned: false license: apache-2.0 tags: - computer-vision - video - segmentation - sam2 - background-removal - object-tracking --- # 🎥 SAM2 Video Background Remover Remove backgrounds from videos by tracking objects using Meta's **Segment Anything Model 2 (SAM2)**. ## Features ✨ **Background Removal**: Automatically remove backgrounds and keep only tracked objects 🎯 **Object Tracking**: Track multiple objects across video frames 🖥️ **Interactive UI**: Easy-to-use Gradio interface 🔌 **REST API**: Programmatic access via API endpoints ⚡ **GPU Accelerated**: Fast processing with CUDA support ## How It Works SAM2 is a foundation model for video segmentation that can: 1. **Segment objects** based on point or box annotations 2. **Track objects** automatically across all video frames 3. **Handle occlusions** and object reappearance 4. **Process multiple objects** simultaneously ## Usage ### 🖱️ Simple Mode (Web UI) 1. Upload your video 2. Specify X,Y coordinates of the object you want to track (from first frame) 3. Click "Process Video" 4. Download the result with background removed! **Example**: For a 640x480 video with a person in the center, use X=320, Y=240 ### 🔧 Advanced Mode (JSON Annotations) For more control, use JSON annotations: ```json [ { "frame_idx": 0, "object_id": 1, "points": [[320, 240]], "labels": [1] } ] ``` **Parameters**: - `frame_idx`: Frame number to annotate (0 = first frame) - `object_id`: Unique ID for each object (1, 2, 3, ...) - `points`: List of [x, y] coordinates on the object - `labels`: `1` for foreground point, `0` for background point ### 📡 API Usage You can call this Space programmatically using the Gradio Client: #### Python Example ```python from gradio_client import Client import json # Connect to the Space client = Client("YOUR_USERNAME/sam2-video-bg-remover") # Define what to track annotations = [ { "frame_idx": 0, "object_id": 1, "points": [[320, 240]], # x, y coordinates "labels": [1] # 1 = foreground } ] # Process video result = client.predict( video_file="./input_video.mp4", annotations_json=json.dumps(annotations), remove_background=True, max_frames=300, # Limit frames for faster processing api_name="/segment_video_api" ) print(f"Output video saved to: {result}") ``` #### Track Multiple Objects ```python annotations = [ # First object (person) { "frame_idx": 0, "object_id": 1, "points": [[320, 240]], "labels": [1] }, # Second object (ball) { "frame_idx": 0, "object_id": 2, "points": [[500, 300]], "labels": [1] } ] ``` #### Refine Segmentation with Background Points ```python annotations = [ { "frame_idx": 0, "object_id": 1, "points": [ [320, 240], # Point ON the object [100, 100] # Point on background to exclude ], "labels": [1, 0] # 1=foreground, 0=background } ] ``` ### 🌐 HTTP API You can also call the API directly via HTTP: ```bash curl -X POST https://YOUR_USERNAME-sam2-video-bg-remover.hf.space/api/predict \ -F "video_file=@input_video.mp4" \ -F 'annotations_json=[{"frame_idx":0,"object_id":1,"points":[[320,240]],"labels":[1]}]' \ -F "remove_background=true" \ -F "max_frames=300" ``` ## Parameters | Parameter | Type | Default | Description | |-----------|------|---------|-------------| | `video_file` | File | - | Input video file (required) | | `annotations_json` | String | - | JSON array of annotations (required) | | `remove_background` | Boolean | `true` | Remove background or just highlight objects | | `max_frames` | Integer | `null` | Limit frames for faster processing | ## Tips & Best Practices ### 🎯 Getting Good Results 1. **Choose Clear Points**: Click on the center/most distinctive part of your object 2. **Add Multiple Points**: For complex objects, add 2-3 points on different parts 3. **Use Background Points**: Add points with `label: 0` on areas you DON'T want 4. **Annotate Key Frames**: If object changes significantly, add annotations on multiple frames ### ⚡ Performance Tips 1. **Limit Frames**: Use `max_frames` parameter for long videos 2. **Use Smaller Model**: Default is `sam2.1-hiera-tiny` for speed 3. **Process Shorter Clips**: Split long videos into segments ### 🐛 Troubleshooting | Issue | Solution | |-------|----------| | Object not tracked | Add more points on different parts of the object | | Background leakage | Add background points with `label: 0` | | Slow processing | Reduce `max_frames` or use a shorter video | | Wrong object tracked | Be more precise with point coordinates | ## Model Information This Space uses **facebook/sam2.1-hiera-tiny** for efficient processing. Other available models: - `facebook/sam2.1-hiera-tiny` - Fastest, good quality ⚡ - `facebook/sam2.1-hiera-small` - Balanced - `facebook/sam2.1-hiera-base-plus` - Higher quality - `facebook/sam2.1-hiera-large` - Best quality, slower 🎯 ## Use Cases - 🎬 **Video Production**: Remove backgrounds for green screen effects - 🏃 **Sports Analysis**: Isolate athletes for motion analysis - 🎮 **Content Creation**: Extract game characters or objects - 🔬 **Research**: Track objects in scientific videos - 📱 **Social Media**: Create engaging content with background removal ## Limitations - Video length affects processing time (longer = slower) - GPU recommended for videos > 10 seconds - Very fast-moving objects may require multiple annotations - Extreme lighting changes can affect tracking quality ## Citation If you use this Space, please cite the SAM2 paper: ```bibtex @article{ravi2024sam2, title={Segment Anything in Images and Videos}, author={Ravi, Nikhila and Gabeur, Valentin and Hu, Yuan-Ting and Hu, Ronghang and Ryali, Chaitanya and Ma, Tengyu and Khedr, Haitham and R{\"a}dle, Roman and Rolland, Chloe and Gustafson, Laura and others}, journal={arXiv preprint arXiv:2408.00714}, year={2024} } ``` ## License Apache 2.0 ## Links - 📚 [SAM2 Documentation](https://huggingface.co/docs/transformers/model_doc/sam2_video) - 🤗 [Model on Hugging Face](https://huggingface.co/facebook/sam2.1-hiera-tiny) - 📄 [Research Paper](https://arxiv.org/abs/2408.00714) - 💻 [Original Repository](https://github.com/facebookresearch/segment-anything-2) --- Built with ❤️ using [Transformers](https://github.com/huggingface/transformers) and [Gradio](https://gradio.app)