Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,11 +7,87 @@ import spacy
|
|
| 7 |
import gradio as gr
|
| 8 |
import en_core_web_trf
|
| 9 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
dataset = load_dataset("gigant/tib_transcripts")
|
| 12 |
|
| 13 |
nlp = en_core_web_trf.load()
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
def half_circle_layout(n_nodes, sentence_node=True):
|
| 16 |
pos = {}
|
| 17 |
for i_node in range(n_nodes - 1):
|
|
@@ -127,19 +203,23 @@ def convert_jraph_to_networkx_graph(jraph_graph: jraph.GraphsTuple) -> nx.Graph:
|
|
| 127 |
int(senders[e]), int(receivers[e]), edge_feature=edges[e])
|
| 128 |
return nx_graph
|
| 129 |
|
| 130 |
-
def plot_graph_sentence(sentence, graph_type="
|
| 131 |
# sentences = dataset["train"][0]["abstract"].split(".")
|
| 132 |
docs = dependency_parser([sentence])
|
| 133 |
if graph_type == "dependency":
|
| 134 |
graphs = construct_dependency_graph(docs)
|
| 135 |
elif graph_type == "structural":
|
| 136 |
graphs = construct_structural_graph(docs)
|
| 137 |
-
elif graph_type == "
|
| 138 |
graphs = construct_both_graph(docs)
|
|
|
|
|
|
|
| 139 |
g = to_jraph(graphs[0])
|
| 140 |
adj_mat = get_adjacency_matrix(g)
|
| 141 |
nx_graph = convert_jraph_to_networkx_graph(g)
|
| 142 |
pos = half_circle_layout(len(graphs[0]["nodes"]))
|
|
|
|
|
|
|
| 143 |
plot = plt.figure(figsize=(12, 6))
|
| 144 |
nx.draw(nx_graph, pos=pos,
|
| 145 |
labels={i: e for i,e in enumerate(graphs[0]["nodes"])},
|
|
@@ -160,6 +240,8 @@ def get_list_sentences(id):
|
|
| 160 |
return gr.update(choices = dataset["train"][id]["transcript"].split("."))
|
| 161 |
|
| 162 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
| 163 |
with gr.Tab("From transcript"):
|
| 164 |
with gr.Row():
|
| 165 |
with gr.Column():
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
import en_core_web_trf
|
| 9 |
import numpy as np
|
| 10 |
+
import benepar
|
| 11 |
+
import re
|
| 12 |
+
|
| 13 |
|
| 14 |
dataset = load_dataset("gigant/tib_transcripts")
|
| 15 |
|
| 16 |
nlp = en_core_web_trf.load()
|
| 17 |
|
| 18 |
+
benepar.download('benepar_en3')
|
| 19 |
+
nlp.add_pipe('benepar', config={'model': 'benepar_en3'})
|
| 20 |
+
|
| 21 |
+
def parse_tree(sentence):
|
| 22 |
+
stack = [] # or a `collections.deque()` object, which is a little faster
|
| 23 |
+
top = items = []
|
| 24 |
+
for token in filter(None, re.compile(r'(?:([()])|\s+)').split(sentence)):
|
| 25 |
+
if token == '(':
|
| 26 |
+
stack.append(items)
|
| 27 |
+
items.append([])
|
| 28 |
+
items = items[-1]
|
| 29 |
+
elif token == ')':
|
| 30 |
+
if not stack:
|
| 31 |
+
raise ValueError("Unbalanced parentheses")
|
| 32 |
+
items = stack.pop()
|
| 33 |
+
else:
|
| 34 |
+
items.append(token)
|
| 35 |
+
if stack:
|
| 36 |
+
raise ValueError("Unbalanced parentheses")
|
| 37 |
+
return top
|
| 38 |
+
|
| 39 |
+
class Tree():
|
| 40 |
+
def __init__(self, name, children):
|
| 41 |
+
self.children = children
|
| 42 |
+
self.name = name
|
| 43 |
+
self.id = None
|
| 44 |
+
def set_id_rec(self, id=0):
|
| 45 |
+
self.id = id
|
| 46 |
+
last_id=id
|
| 47 |
+
for child in self.children:
|
| 48 |
+
last_id = child.set_id_rec(id=last_id+1)
|
| 49 |
+
return last_id
|
| 50 |
+
def set_all_ids(self):
|
| 51 |
+
self.set_id_rec(0)
|
| 52 |
+
def print_tree(self, level=0):
|
| 53 |
+
to_print = f'|{"-" * level} {self.name} ({self.id})'
|
| 54 |
+
for child in self.children:
|
| 55 |
+
to_print += f"\n{child.print_tree(level + 1)}"
|
| 56 |
+
return to_print
|
| 57 |
+
def __str__(self):
|
| 58 |
+
return self.print_tree(0)
|
| 59 |
+
def get_list_nodes(self):
|
| 60 |
+
return [self.name] + [_ for child in self.children for _ in child.get_list_nodes()]
|
| 61 |
+
|
| 62 |
+
def rec_const_parsing(list_nodes):
|
| 63 |
+
if isinstance(list_nodes, list):
|
| 64 |
+
name, children = list_nodes[0], list_nodes[1:]
|
| 65 |
+
else:
|
| 66 |
+
name, children = list_nodes, []
|
| 67 |
+
return Tree(name, [rec_const_parsing(child) for i, child in enumerate(children)])
|
| 68 |
+
|
| 69 |
+
def tree_to_graph(t):
|
| 70 |
+
senders = []
|
| 71 |
+
receivers = []
|
| 72 |
+
for child in t.children:
|
| 73 |
+
senders.append(t.id)
|
| 74 |
+
receivers.append(child.id)
|
| 75 |
+
s_rec, r_rec = tree_to_graph(child)
|
| 76 |
+
senders.extend(s_rec)
|
| 77 |
+
receivers.extend(r_rec)
|
| 78 |
+
return senders, receivers
|
| 79 |
+
|
| 80 |
+
def construct_constituency_graph(docs):
|
| 81 |
+
doc = docs[0]
|
| 82 |
+
sent = list(doc.sents)[0]
|
| 83 |
+
print(sent._.parse_string)
|
| 84 |
+
t = rec_const_parsing(parse_tree(sent._.parse_string)[0])
|
| 85 |
+
t.set_all_ids()
|
| 86 |
+
senders, receivers = tree_to_graph(t)
|
| 87 |
+
nodes = t.get_list_nodes()
|
| 88 |
+
graphs = [{"nodes": nodes, "senders": senders, "receivers": receivers, "edge_labels": {}}]
|
| 89 |
+
return graphs
|
| 90 |
+
|
| 91 |
def half_circle_layout(n_nodes, sentence_node=True):
|
| 92 |
pos = {}
|
| 93 |
for i_node in range(n_nodes - 1):
|
|
|
|
| 203 |
int(senders[e]), int(receivers[e]), edge_feature=edges[e])
|
| 204 |
return nx_graph
|
| 205 |
|
| 206 |
+
def plot_graph_sentence(sentence, graph_type="constituency"):
|
| 207 |
# sentences = dataset["train"][0]["abstract"].split(".")
|
| 208 |
docs = dependency_parser([sentence])
|
| 209 |
if graph_type == "dependency":
|
| 210 |
graphs = construct_dependency_graph(docs)
|
| 211 |
elif graph_type == "structural":
|
| 212 |
graphs = construct_structural_graph(docs)
|
| 213 |
+
elif graph_type == "structural+dependency":
|
| 214 |
graphs = construct_both_graph(docs)
|
| 215 |
+
elif graph_type == "constituency":
|
| 216 |
+
graphs = construct_constituency_graph(docs)
|
| 217 |
g = to_jraph(graphs[0])
|
| 218 |
adj_mat = get_adjacency_matrix(g)
|
| 219 |
nx_graph = convert_jraph_to_networkx_graph(g)
|
| 220 |
pos = half_circle_layout(len(graphs[0]["nodes"]))
|
| 221 |
+
if graph_type == "constituency":
|
| 222 |
+
pos = nx.planar_layout(nx_graph)
|
| 223 |
plot = plt.figure(figsize=(12, 6))
|
| 224 |
nx.draw(nx_graph, pos=pos,
|
| 225 |
labels={i: e for i,e in enumerate(graphs[0]["nodes"])},
|
|
|
|
| 240 |
return gr.update(choices = dataset["train"][id]["transcript"].split("."))
|
| 241 |
|
| 242 |
with gr.Blocks() as demo:
|
| 243 |
+
with gr.Row():
|
| 244 |
+
graph_type = gr.Dropdown(label="Graph type", choices=["structural", "dependency", "structural+dependency", "constituency"], value="structural+dependency")
|
| 245 |
with gr.Tab("From transcript"):
|
| 246 |
with gr.Row():
|
| 247 |
with gr.Column():
|