Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,863 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tempfile
|
| 2 |
+
import time
|
| 3 |
+
from collections.abc import Sequence
|
| 4 |
+
from typing import Any, cast
|
| 5 |
+
import os
|
| 6 |
+
from huggingface_hub import login, hf_hub_download
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import numpy as np
|
| 10 |
+
import pillow_heif
|
| 11 |
+
import spaces
|
| 12 |
+
import torch
|
| 13 |
+
from gradio_image_annotation import image_annotator
|
| 14 |
+
from gradio_imageslider import ImageSlider
|
| 15 |
+
from PIL import Image
|
| 16 |
+
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
|
| 17 |
+
from refiners.fluxion.utils import no_grad
|
| 18 |
+
from refiners.solutions import BoxSegmenter
|
| 19 |
+
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
|
| 20 |
+
from diffusers import FluxPipeline
|
| 21 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 22 |
+
import gc
|
| 23 |
+
|
| 24 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 25 |
+
from PIL import Image
|
| 26 |
+
from gradio_client import Client, handle_file
|
| 27 |
+
import uuid
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def clear_memory():
|
| 31 |
+
"""๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์"""
|
| 32 |
+
gc.collect()
|
| 33 |
+
try:
|
| 34 |
+
if torch.cuda.is_available():
|
| 35 |
+
with torch.cuda.device(0): # ๋ช
์์ ์ผ๋ก device 0 ์ฌ์ฉ
|
| 36 |
+
torch.cuda.empty_cache()
|
| 37 |
+
except:
|
| 38 |
+
pass
|
| 39 |
+
|
| 40 |
+
# GPU ์ค์
|
| 41 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # ๋ช
์์ ์ผ๋ก cuda:0 ์ง์
|
| 42 |
+
|
| 43 |
+
# GPU ์ค์ ์ try-except๋ก ๊ฐ์ธ๊ธฐ
|
| 44 |
+
if torch.cuda.is_available():
|
| 45 |
+
try:
|
| 46 |
+
with torch.cuda.device(0):
|
| 47 |
+
torch.cuda.empty_cache()
|
| 48 |
+
torch.backends.cudnn.benchmark = True
|
| 49 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 50 |
+
except:
|
| 51 |
+
print("Warning: Could not configure CUDA settings")
|
| 52 |
+
|
| 53 |
+
# ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ
|
| 54 |
+
model_name = "Helsinki-NLP/opus-mt-ko-en"
|
| 55 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 56 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to('cpu')
|
| 57 |
+
translator = pipeline("translation", model=model, tokenizer=tokenizer, device=-1)
|
| 58 |
+
|
| 59 |
+
def translate_to_english(text: str) -> str:
|
| 60 |
+
"""ํ๊ธ ํ
์คํธ๋ฅผ ์์ด๋ก ๋ฒ์ญ"""
|
| 61 |
+
try:
|
| 62 |
+
if any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text):
|
| 63 |
+
translated = translator(text, max_length=128)[0]['translation_text']
|
| 64 |
+
print(f"Translated '{text}' to '{translated}'")
|
| 65 |
+
return translated
|
| 66 |
+
return text
|
| 67 |
+
except Exception as e:
|
| 68 |
+
print(f"Translation error: {str(e)}")
|
| 69 |
+
return text
|
| 70 |
+
|
| 71 |
+
BoundingBox = tuple[int, int, int, int]
|
| 72 |
+
|
| 73 |
+
pillow_heif.register_heif_opener()
|
| 74 |
+
pillow_heif.register_avif_opener()
|
| 75 |
+
|
| 76 |
+
# HF ํ ํฐ ์ค์
|
| 77 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 78 |
+
if HF_TOKEN is None:
|
| 79 |
+
raise ValueError("Please set the HF_TOKEN environment variable")
|
| 80 |
+
|
| 81 |
+
try:
|
| 82 |
+
login(token=HF_TOKEN)
|
| 83 |
+
except Exception as e:
|
| 84 |
+
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
|
| 85 |
+
|
| 86 |
+
# ๋ชจ๋ธ ์ด๊ธฐํ
|
| 87 |
+
segmenter = BoxSegmenter(device="cpu")
|
| 88 |
+
segmenter.device = device
|
| 89 |
+
segmenter.model = segmenter.model.to(device=segmenter.device)
|
| 90 |
+
|
| 91 |
+
gd_model_path = "IDEA-Research/grounding-dino-base"
|
| 92 |
+
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
|
| 93 |
+
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
|
| 94 |
+
gd_model = gd_model.to(device=device)
|
| 95 |
+
assert isinstance(gd_model, GroundingDinoForObjectDetection)
|
| 96 |
+
|
| 97 |
+
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
|
| 98 |
+
pipe = FluxPipeline.from_pretrained(
|
| 99 |
+
"black-forest-labs/FLUX.1-dev",
|
| 100 |
+
torch_dtype=torch.float16,
|
| 101 |
+
use_auth_token=HF_TOKEN
|
| 102 |
+
)
|
| 103 |
+
pipe.enable_attention_slicing(slice_size="auto")
|
| 104 |
+
|
| 105 |
+
# LoRA ๊ฐ์ค์น ๋ก๋
|
| 106 |
+
pipe.load_lora_weights(
|
| 107 |
+
hf_hub_download(
|
| 108 |
+
"ByteDance/Hyper-SD",
|
| 109 |
+
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
|
| 110 |
+
use_auth_token=HF_TOKEN
|
| 111 |
+
)
|
| 112 |
+
)
|
| 113 |
+
pipe.fuse_lora(lora_scale=0.125)
|
| 114 |
+
|
| 115 |
+
# GPU ์ค์ ์ try-except๋ก ๊ฐ์ธ๊ธฐ
|
| 116 |
+
try:
|
| 117 |
+
if torch.cuda.is_available():
|
| 118 |
+
pipe = pipe.to("cuda:0") # ๋ช
์์ ์ผ๋ก cuda:0 ์ง์
|
| 119 |
+
except Exception as e:
|
| 120 |
+
print(f"Warning: Could not move pipeline to CUDA: {str(e)}")
|
| 121 |
+
|
| 122 |
+
client = Client("NabeelShar/BiRefNet_for_text_writing")
|
| 123 |
+
|
| 124 |
+
class timer:
|
| 125 |
+
def __init__(self, method_name="timed process"):
|
| 126 |
+
self.method = method_name
|
| 127 |
+
def __enter__(self):
|
| 128 |
+
self.start = time.time()
|
| 129 |
+
print(f"{self.method} starts")
|
| 130 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 131 |
+
end = time.time()
|
| 132 |
+
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
| 133 |
+
|
| 134 |
+
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
|
| 135 |
+
if not bboxes:
|
| 136 |
+
return None
|
| 137 |
+
for bbox in bboxes:
|
| 138 |
+
assert len(bbox) == 4
|
| 139 |
+
assert all(isinstance(x, int) for x in bbox)
|
| 140 |
+
return (
|
| 141 |
+
min(bbox[0] for bbox in bboxes),
|
| 142 |
+
min(bbox[1] for bbox in bboxes),
|
| 143 |
+
max(bbox[2] for bbox in bboxes),
|
| 144 |
+
max(bbox[3] for bbox in bboxes),
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
|
| 148 |
+
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
|
| 149 |
+
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
|
| 150 |
+
|
| 151 |
+
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
|
| 152 |
+
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
|
| 153 |
+
with no_grad():
|
| 154 |
+
outputs = gd_model(**inputs)
|
| 155 |
+
width, height = img.size
|
| 156 |
+
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
|
| 157 |
+
outputs,
|
| 158 |
+
inputs["input_ids"],
|
| 159 |
+
target_sizes=[(height, width)],
|
| 160 |
+
)[0]
|
| 161 |
+
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
|
| 162 |
+
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
|
| 163 |
+
return bbox_union(bboxes.numpy().tolist())
|
| 164 |
+
|
| 165 |
+
def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image:
|
| 166 |
+
assert img.size == mask_img.size
|
| 167 |
+
img = img.convert("RGB")
|
| 168 |
+
mask_img = mask_img.convert("L")
|
| 169 |
+
if defringe:
|
| 170 |
+
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
|
| 171 |
+
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
|
| 172 |
+
img = Image.fromarray((foreground * 255).astype("uint8"))
|
| 173 |
+
result = Image.new("RGBA", img.size)
|
| 174 |
+
result.paste(img, (0, 0), mask_img)
|
| 175 |
+
return result
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]:
|
| 179 |
+
"""์ด๋ฏธ์ง ํฌ๊ธฐ๋ฅผ 8์ ๋ฐฐ์๋ก ์กฐ์ ํ๋ ํจ์"""
|
| 180 |
+
new_width = ((width + 7) // 8) * 8
|
| 181 |
+
new_height = ((height + 7) // 8) * 8
|
| 182 |
+
return new_width, new_height
|
| 183 |
+
|
| 184 |
+
def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]:
|
| 185 |
+
"""์ ํ๋ ๋น์จ์ ๋ฐ๋ผ ์ด๋ฏธ์ง ํฌ๊ธฐ ๊ณ์ฐ"""
|
| 186 |
+
if aspect_ratio == "1:1":
|
| 187 |
+
return base_size, base_size
|
| 188 |
+
elif aspect_ratio == "16:9":
|
| 189 |
+
return base_size * 16 // 9, base_size
|
| 190 |
+
elif aspect_ratio == "9:16":
|
| 191 |
+
return base_size, base_size * 16 // 9
|
| 192 |
+
elif aspect_ratio == "4:3":
|
| 193 |
+
return base_size * 4 // 3, base_size
|
| 194 |
+
return base_size, base_size
|
| 195 |
+
|
| 196 |
+
@spaces.GPU(duration=20) # 40์ด์์ 20์ด๋ก ๊ฐ์
|
| 197 |
+
def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
|
| 198 |
+
try:
|
| 199 |
+
width, height = calculate_dimensions(aspect_ratio)
|
| 200 |
+
width, height = adjust_size_to_multiple_of_8(width, height)
|
| 201 |
+
|
| 202 |
+
max_size = 768
|
| 203 |
+
if width > max_size or height > max_size:
|
| 204 |
+
ratio = max_size / max(width, height)
|
| 205 |
+
width = int(width * ratio)
|
| 206 |
+
height = int(height * ratio)
|
| 207 |
+
width, height = adjust_size_to_multiple_of_8(width, height)
|
| 208 |
+
|
| 209 |
+
with timer("Background generation"):
|
| 210 |
+
try:
|
| 211 |
+
with torch.inference_mode():
|
| 212 |
+
image = pipe(
|
| 213 |
+
prompt=prompt,
|
| 214 |
+
width=width,
|
| 215 |
+
height=height,
|
| 216 |
+
num_inference_steps=8,
|
| 217 |
+
guidance_scale=4.0
|
| 218 |
+
).images[0]
|
| 219 |
+
except Exception as e:
|
| 220 |
+
print(f"Pipeline error: {str(e)}")
|
| 221 |
+
return Image.new('RGB', (width, height), 'white')
|
| 222 |
+
|
| 223 |
+
return image
|
| 224 |
+
except Exception as e:
|
| 225 |
+
print(f"Background generation error: {str(e)}")
|
| 226 |
+
return Image.new('RGB', (512, 512), 'white')
|
| 227 |
+
|
| 228 |
+
def create_position_grid():
|
| 229 |
+
return """
|
| 230 |
+
<div class="position-grid" style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; width: 150px; margin: auto;">
|
| 231 |
+
<button class="position-btn" data-pos="top-left">โ</button>
|
| 232 |
+
<button class="position-btn" data-pos="top-center">โ</button>
|
| 233 |
+
<button class="position-btn" data-pos="top-right">โ</button>
|
| 234 |
+
<button class="position-btn" data-pos="middle-left">โ</button>
|
| 235 |
+
<button class="position-btn" data-pos="middle-center">โข</button>
|
| 236 |
+
<button class="position-btn" data-pos="middle-right">โ</button>
|
| 237 |
+
<button class="position-btn" data-pos="bottom-left">โ</button>
|
| 238 |
+
<button class="position-btn" data-pos="bottom-center" data-default="true">โ</button>
|
| 239 |
+
<button class="position-btn" data-pos="bottom-right">โ</button>
|
| 240 |
+
</div>
|
| 241 |
+
"""
|
| 242 |
+
|
| 243 |
+
def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]:
|
| 244 |
+
"""์ค๋ธ์ ํธ์ ์์น ๊ณ์ฐ"""
|
| 245 |
+
bg_width, bg_height = bg_size
|
| 246 |
+
obj_width, obj_height = obj_size
|
| 247 |
+
|
| 248 |
+
positions = {
|
| 249 |
+
"top-left": (0, 0),
|
| 250 |
+
"top-center": ((bg_width - obj_width) // 2, 0),
|
| 251 |
+
"top-right": (bg_width - obj_width, 0),
|
| 252 |
+
"middle-left": (0, (bg_height - obj_height) // 2),
|
| 253 |
+
"middle-center": ((bg_width - obj_width) // 2, (bg_height - obj_height) // 2),
|
| 254 |
+
"middle-right": (bg_width - obj_width, (bg_height - obj_height) // 2),
|
| 255 |
+
"bottom-left": (0, bg_height - obj_height),
|
| 256 |
+
"bottom-center": ((bg_width - obj_width) // 2, bg_height - obj_height),
|
| 257 |
+
"bottom-right": (bg_width - obj_width, bg_height - obj_height)
|
| 258 |
+
}
|
| 259 |
+
|
| 260 |
+
return positions.get(position, positions["bottom-center"])
|
| 261 |
+
|
| 262 |
+
def resize_object(image: Image.Image, scale_percent: float) -> Image.Image:
|
| 263 |
+
"""์ค๋ธ์ ํธ ํฌ๊ธฐ ์กฐ์ """
|
| 264 |
+
width = int(image.width * scale_percent / 100)
|
| 265 |
+
height = int(image.height * scale_percent / 100)
|
| 266 |
+
return image.resize((width, height), Image.Resampling.LANCZOS)
|
| 267 |
+
|
| 268 |
+
def combine_with_background(foreground: Image.Image, background: Image.Image,
|
| 269 |
+
position: str = "bottom-center", scale_percent: float = 100) -> Image.Image:
|
| 270 |
+
"""์ ๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ ํฉ์ฑ ํจ์"""
|
| 271 |
+
# ๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง ์ค๋น
|
| 272 |
+
result = background.convert('RGBA')
|
| 273 |
+
|
| 274 |
+
# ์ค๋ธ์ ํธ ํฌ๊ธฐ ์กฐ์
|
| 275 |
+
scaled_foreground = resize_object(foreground, scale_percent)
|
| 276 |
+
|
| 277 |
+
# ์ค๋ธ์ ํธ ์์น ๊ณ์ฐ
|
| 278 |
+
x, y = calculate_object_position(position, result.size, scaled_foreground.size)
|
| 279 |
+
|
| 280 |
+
# ํฉ์ฑ
|
| 281 |
+
result.paste(scaled_foreground, (x, y), scaled_foreground)
|
| 282 |
+
return result
|
| 283 |
+
|
| 284 |
+
@spaces.GPU(duration=30) # 120์ด์์ 30์ด๋ก ๊ฐ์
|
| 285 |
+
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
|
| 286 |
+
time_log: list[str] = []
|
| 287 |
+
try:
|
| 288 |
+
if isinstance(prompt, str):
|
| 289 |
+
t0 = time.time()
|
| 290 |
+
bbox = gd_detect(img, prompt)
|
| 291 |
+
time_log.append(f"detect: {time.time() - t0}")
|
| 292 |
+
if not bbox:
|
| 293 |
+
print(time_log[0])
|
| 294 |
+
raise gr.Error("No object detected")
|
| 295 |
+
else:
|
| 296 |
+
bbox = prompt
|
| 297 |
+
t0 = time.time()
|
| 298 |
+
mask = segmenter(img, bbox)
|
| 299 |
+
time_log.append(f"segment: {time.time() - t0}")
|
| 300 |
+
return mask, bbox, time_log
|
| 301 |
+
except Exception as e:
|
| 302 |
+
print(f"GPU process error: {str(e)}")
|
| 303 |
+
raise
|
| 304 |
+
|
| 305 |
+
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
|
| 306 |
+
try:
|
| 307 |
+
# ์
๋ ฅ ์ด๋ฏธ์ง ํฌ๊ธฐ ์ ํ
|
| 308 |
+
max_size = 1024
|
| 309 |
+
if img.width > max_size or img.height > max_size:
|
| 310 |
+
ratio = max_size / max(img.width, img.height)
|
| 311 |
+
new_size = (int(img.width * ratio), int(img.height * ratio))
|
| 312 |
+
img = img.resize(new_size, Image.LANCZOS)
|
| 313 |
+
|
| 314 |
+
# CUDA ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์์
|
| 315 |
+
try:
|
| 316 |
+
if torch.cuda.is_available():
|
| 317 |
+
current_device = torch.cuda.current_device()
|
| 318 |
+
with torch.cuda.device(current_device):
|
| 319 |
+
torch.cuda.empty_cache()
|
| 320 |
+
except Exception as e:
|
| 321 |
+
print(f"CUDA memory management failed: {e}")
|
| 322 |
+
|
| 323 |
+
with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
|
| 324 |
+
mask, bbox, time_log = _gpu_process(img, prompt)
|
| 325 |
+
masked_alpha = apply_mask(img, mask, defringe=True)
|
| 326 |
+
|
| 327 |
+
if bg_prompt:
|
| 328 |
+
background = generate_background(bg_prompt, aspect_ratio)
|
| 329 |
+
combined = background
|
| 330 |
+
else:
|
| 331 |
+
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
|
| 332 |
+
|
| 333 |
+
clear_memory()
|
| 334 |
+
|
| 335 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp:
|
| 336 |
+
combined.save(temp.name)
|
| 337 |
+
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
|
| 338 |
+
except Exception as e:
|
| 339 |
+
clear_memory()
|
| 340 |
+
print(f"Processing error: {str(e)}")
|
| 341 |
+
raise gr.Error(f"Processing failed: {str(e)}")
|
| 342 |
+
|
| 343 |
+
def on_change_bbox(prompts: dict[str, Any] | None):
|
| 344 |
+
return gr.update(interactive=prompts is not None)
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
|
| 348 |
+
return gr.update(interactive=bool(img and prompt))
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None,
|
| 353 |
+
aspect_ratio: str = "1:1", position: str = "bottom-center",
|
| 354 |
+
scale_percent: float = 100) -> tuple[Image.Image, Image.Image]:
|
| 355 |
+
try:
|
| 356 |
+
if img is None or prompt.strip() == "":
|
| 357 |
+
raise gr.Error("Please provide both image and prompt")
|
| 358 |
+
|
| 359 |
+
print(f"Processing with position: {position}, scale: {scale_percent}")
|
| 360 |
+
|
| 361 |
+
try:
|
| 362 |
+
prompt = translate_to_english(prompt)
|
| 363 |
+
if bg_prompt:
|
| 364 |
+
bg_prompt = translate_to_english(bg_prompt)
|
| 365 |
+
except Exception as e:
|
| 366 |
+
print(f"Translation error (continuing with original text): {str(e)}")
|
| 367 |
+
|
| 368 |
+
results, _ = _process(img, prompt, bg_prompt, aspect_ratio)
|
| 369 |
+
|
| 370 |
+
if bg_prompt:
|
| 371 |
+
try:
|
| 372 |
+
combined = combine_with_background(
|
| 373 |
+
foreground=results[2],
|
| 374 |
+
background=results[1],
|
| 375 |
+
position=position,
|
| 376 |
+
scale_percent=scale_percent
|
| 377 |
+
)
|
| 378 |
+
print(f"Combined image created with position: {position}")
|
| 379 |
+
return combined, results[2]
|
| 380 |
+
except Exception as e:
|
| 381 |
+
print(f"Combination error: {str(e)}")
|
| 382 |
+
return results[1], results[2]
|
| 383 |
+
|
| 384 |
+
return results[1], results[2]
|
| 385 |
+
except Exception as e:
|
| 386 |
+
print(f"Error in process_prompt: {str(e)}")
|
| 387 |
+
raise gr.Error(str(e))
|
| 388 |
+
finally:
|
| 389 |
+
clear_memory()
|
| 390 |
+
|
| 391 |
+
def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
|
| 392 |
+
try:
|
| 393 |
+
if img is None or box_input.strip() == "":
|
| 394 |
+
raise gr.Error("Please provide both image and bounding box coordinates")
|
| 395 |
+
|
| 396 |
+
try:
|
| 397 |
+
coords = eval(box_input)
|
| 398 |
+
if not isinstance(coords, list) or len(coords) != 4:
|
| 399 |
+
raise ValueError("Invalid box format")
|
| 400 |
+
bbox = tuple(int(x) for x in coords)
|
| 401 |
+
except:
|
| 402 |
+
raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]")
|
| 403 |
+
|
| 404 |
+
# Process the image
|
| 405 |
+
results, _ = _process(img, bbox)
|
| 406 |
+
|
| 407 |
+
# ํฉ์ฑ๋ ์ด๋ฏธ์ง์ ์ถ์ถ๋ ์ด๋ฏธ์ง๋ง ๋ฐํ
|
| 408 |
+
return results[1], results[2]
|
| 409 |
+
except Exception as e:
|
| 410 |
+
raise gr.Error(str(e))
|
| 411 |
+
|
| 412 |
+
# Event handler functions ์์
|
| 413 |
+
def update_process_button(img, prompt):
|
| 414 |
+
return gr.update(
|
| 415 |
+
interactive=bool(img and prompt),
|
| 416 |
+
variant="primary" if bool(img and prompt) else "secondary"
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
def update_box_button(img, box_input):
|
| 420 |
+
try:
|
| 421 |
+
if img and box_input:
|
| 422 |
+
coords = eval(box_input)
|
| 423 |
+
if isinstance(coords, list) and len(coords) == 4:
|
| 424 |
+
return gr.update(interactive=True, variant="primary")
|
| 425 |
+
return gr.update(interactive=False, variant="secondary")
|
| 426 |
+
except:
|
| 427 |
+
return gr.update(interactive=False, variant="secondary")
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
# CSS ์ ์
|
| 431 |
+
css = """
|
| 432 |
+
footer {display: none}
|
| 433 |
+
.main-title {
|
| 434 |
+
text-align: center;
|
| 435 |
+
margin: 2em 0;
|
| 436 |
+
padding: 1em;
|
| 437 |
+
background: #f7f7f7;
|
| 438 |
+
border-radius: 10px;
|
| 439 |
+
}
|
| 440 |
+
.main-title h1 {
|
| 441 |
+
color: #2196F3;
|
| 442 |
+
font-size: 2.5em;
|
| 443 |
+
margin-bottom: 0.5em;
|
| 444 |
+
}
|
| 445 |
+
.main-title p {
|
| 446 |
+
color: #666;
|
| 447 |
+
font-size: 1.2em;
|
| 448 |
+
}
|
| 449 |
+
.container {
|
| 450 |
+
max-width: 1200px;
|
| 451 |
+
margin: auto;
|
| 452 |
+
padding: 20px;
|
| 453 |
+
}
|
| 454 |
+
.tabs {
|
| 455 |
+
margin-top: 1em;
|
| 456 |
+
}
|
| 457 |
+
.input-group {
|
| 458 |
+
background: white;
|
| 459 |
+
padding: 1em;
|
| 460 |
+
border-radius: 8px;
|
| 461 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 462 |
+
}
|
| 463 |
+
.output-group {
|
| 464 |
+
background: white;
|
| 465 |
+
padding: 1em;
|
| 466 |
+
border-radius: 8px;
|
| 467 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 468 |
+
}
|
| 469 |
+
button.primary {
|
| 470 |
+
background: #2196F3;
|
| 471 |
+
border: none;
|
| 472 |
+
color: white;
|
| 473 |
+
padding: 0.5em 1em;
|
| 474 |
+
border-radius: 4px;
|
| 475 |
+
cursor: pointer;
|
| 476 |
+
transition: background 0.3s ease;
|
| 477 |
+
}
|
| 478 |
+
button.primary:hover {
|
| 479 |
+
background: #1976D2;
|
| 480 |
+
}
|
| 481 |
+
.position-btn {
|
| 482 |
+
transition: all 0.3s ease;
|
| 483 |
+
}
|
| 484 |
+
.position-btn:hover {
|
| 485 |
+
background-color: #e3f2fd;
|
| 486 |
+
}
|
| 487 |
+
.position-btn.selected {
|
| 488 |
+
background-color: #2196F3;
|
| 489 |
+
color: white;
|
| 490 |
+
}
|
| 491 |
+
"""
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
def add_text_with_stroke(draw, text, x, y, font, text_color, stroke_width):
|
| 496 |
+
"""Helper function to draw text with stroke"""
|
| 497 |
+
# Draw the stroke/outline
|
| 498 |
+
for adj_x in range(-stroke_width, stroke_width + 1):
|
| 499 |
+
for adj_y in range(-stroke_width, stroke_width + 1):
|
| 500 |
+
draw.text((x + adj_x, y + adj_y), text, font=font, fill=text_color)
|
| 501 |
+
|
| 502 |
+
def remove_background(image):
|
| 503 |
+
# Save the image to a specific location
|
| 504 |
+
filename = f"image_{uuid.uuid4()}.png" # Generates a universally unique identifier (UUID) for the filename
|
| 505 |
+
image.save(filename)
|
| 506 |
+
# Call gradio client for background removal
|
| 507 |
+
result = client.predict(images=handle_file(filename), api_name="/image")
|
| 508 |
+
return Image.open(result[0])
|
| 509 |
+
|
| 510 |
+
def superimpose(image_with_text, overlay_image):
|
| 511 |
+
# Open image as RGBA to handle transparency
|
| 512 |
+
overlay_image = overlay_image.convert("RGBA")
|
| 513 |
+
# Paste overlay on the background
|
| 514 |
+
image_with_text.paste(overlay_image, (0, 0), overlay_image)
|
| 515 |
+
# Save the final image
|
| 516 |
+
# image_with_text.save("output_image.png")
|
| 517 |
+
return image_with_text
|
| 518 |
+
|
| 519 |
+
def add_text_to_image(
|
| 520 |
+
input_image,
|
| 521 |
+
text,
|
| 522 |
+
font_size,
|
| 523 |
+
color,
|
| 524 |
+
opacity,
|
| 525 |
+
x_position,
|
| 526 |
+
y_position,
|
| 527 |
+
thickness,
|
| 528 |
+
text_position_type,
|
| 529 |
+
font_choice # ์๋ก์ด ํ๋ผ๋ฏธํฐ ์ถ๊ฐ
|
| 530 |
+
):
|
| 531 |
+
"""
|
| 532 |
+
Add text to an image with customizable properties
|
| 533 |
+
"""
|
| 534 |
+
try:
|
| 535 |
+
if input_image is None:
|
| 536 |
+
return None
|
| 537 |
+
|
| 538 |
+
# PIL Image ๊ฐ์ฒด๋ก ๋ณํ
|
| 539 |
+
if not isinstance(input_image, Image.Image):
|
| 540 |
+
if isinstance(input_image, np.ndarray):
|
| 541 |
+
image = Image.fromarray(input_image)
|
| 542 |
+
else:
|
| 543 |
+
raise ValueError("Unsupported image type")
|
| 544 |
+
else:
|
| 545 |
+
image = input_image.copy()
|
| 546 |
+
|
| 547 |
+
# ์ด๋ฏธ์ง๋ฅผ RGBA ๋ชจ๋๋ก ๋ณํ
|
| 548 |
+
if image.mode != 'RGBA':
|
| 549 |
+
image = image.convert('RGBA')
|
| 550 |
+
|
| 551 |
+
# Text Behind Image ์ฒ๋ฆฌ
|
| 552 |
+
if text_position_type == "Text Behind Image":
|
| 553 |
+
# ์๋ณธ ์ด๋ฏธ์ง์ ๋ฐฐ๊ฒฝ ์ ๊ฑฐ
|
| 554 |
+
overlay_image = remove_background(image)
|
| 555 |
+
|
| 556 |
+
# ํ
์คํธ ์ค๋ฒ๋ ์ด ์์ฑ
|
| 557 |
+
txt_overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
|
| 558 |
+
draw = ImageDraw.Draw(txt_overlay)
|
| 559 |
+
|
| 560 |
+
# ํฐํธ ์ค์
|
| 561 |
+
font_files = {
|
| 562 |
+
"Default": "DejaVuSans.ttf",
|
| 563 |
+
"Korean Regular": "ko-Regular.ttf",
|
| 564 |
+
"Korean Son": "ko-son.ttf"
|
| 565 |
+
}
|
| 566 |
+
|
| 567 |
+
try:
|
| 568 |
+
font_file = font_files.get(font_choice, "DejaVuSans.ttf")
|
| 569 |
+
font = ImageFont.truetype(font_file, int(font_size))
|
| 570 |
+
except Exception as e:
|
| 571 |
+
print(f"Font loading error ({font_choice}): {str(e)}")
|
| 572 |
+
try:
|
| 573 |
+
font = ImageFont.truetype("arial.ttf", int(font_size))
|
| 574 |
+
except:
|
| 575 |
+
print("Using default font")
|
| 576 |
+
font = ImageFont.load_default()
|
| 577 |
+
|
| 578 |
+
# ์์ ์ค์
|
| 579 |
+
color_map = {
|
| 580 |
+
'White': (255, 255, 255),
|
| 581 |
+
'Black': (0, 0, 0),
|
| 582 |
+
'Red': (255, 0, 0),
|
| 583 |
+
'Green': (0, 255, 0),
|
| 584 |
+
'Blue': (0, 0, 255),
|
| 585 |
+
'Yellow': (255, 255, 0),
|
| 586 |
+
'Purple': (128, 0, 128)
|
| 587 |
+
}
|
| 588 |
+
rgb_color = color_map.get(color, (255, 255, 255))
|
| 589 |
+
|
| 590 |
+
# ํ
์คํธ ํฌ๊ธฐ ๊ณ์ฐ
|
| 591 |
+
text_bbox = draw.textbbox((0, 0), text, font=font)
|
| 592 |
+
text_width = text_bbox[2] - text_bbox[0]
|
| 593 |
+
text_height = text_bbox[3] - text_bbox[1]
|
| 594 |
+
|
| 595 |
+
# ์์น ๊ณ์ฐ
|
| 596 |
+
actual_x = int((image.width - text_width) * (x_position / 100))
|
| 597 |
+
actual_y = int((image.height - text_height) * (y_position / 100))
|
| 598 |
+
|
| 599 |
+
# ํ
์คํธ ์์ ์ค์
|
| 600 |
+
text_color = (*rgb_color, int(opacity))
|
| 601 |
+
|
| 602 |
+
# ํ
์คํธ ๊ทธ๋ฆฌ๊ธฐ
|
| 603 |
+
add_text_with_stroke(
|
| 604 |
+
draw,
|
| 605 |
+
text,
|
| 606 |
+
actual_x,
|
| 607 |
+
actual_y,
|
| 608 |
+
font,
|
| 609 |
+
text_color,
|
| 610 |
+
int(thickness)
|
| 611 |
+
)
|
| 612 |
+
|
| 613 |
+
if text_position_type == "Text Behind Image":
|
| 614 |
+
# ํ
์คํธ๋ฅผ ๋จผ์ ๊ทธ๋ฆฌ๊ณ ๊ทธ ์์ ์ด๋ฏธ์ง ์ค๋ฒ๋ ์ด
|
| 615 |
+
output_image = Image.alpha_composite(image, txt_overlay)
|
| 616 |
+
output_image = superimpose(output_image, overlay_image)
|
| 617 |
+
else:
|
| 618 |
+
# ๊ธฐ์กด ๋ฐฉ์๋๋ก ํ
์คํธ๋ฅผ ์ด๋ฏธ์ง ์์ ๊ทธ๋ฆฌ๊ธฐ
|
| 619 |
+
output_image = Image.alpha_composite(image, txt_overlay)
|
| 620 |
+
|
| 621 |
+
# RGB๋ก ๋ณํ
|
| 622 |
+
output_image = output_image.convert('RGB')
|
| 623 |
+
|
| 624 |
+
return output_image
|
| 625 |
+
|
| 626 |
+
except Exception as e:
|
| 627 |
+
print(f"Error in add_text_to_image: {str(e)}")
|
| 628 |
+
return input_image
|
| 629 |
+
|
| 630 |
+
|
| 631 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
| 632 |
+
gr.HTML("""
|
| 633 |
+
<div class="main-title">
|
| 634 |
+
<h1>๐จGiniGen Canvas-o3</h1>
|
| 635 |
+
<p>Remove background of specified objects, generate new backgrounds, and insert text over or behind images with prompts.</p>
|
| 636 |
+
</div>
|
| 637 |
+
""")
|
| 638 |
+
|
| 639 |
+
with gr.Row():
|
| 640 |
+
with gr.Column(scale=1):
|
| 641 |
+
input_image = gr.Image(
|
| 642 |
+
type="pil",
|
| 643 |
+
label="Upload Image",
|
| 644 |
+
interactive=True
|
| 645 |
+
)
|
| 646 |
+
text_prompt = gr.Textbox(
|
| 647 |
+
label="Object to Extract",
|
| 648 |
+
placeholder="Enter what you want to extract...",
|
| 649 |
+
interactive=True
|
| 650 |
+
)
|
| 651 |
+
with gr.Row():
|
| 652 |
+
bg_prompt = gr.Textbox(
|
| 653 |
+
label="Background Prompt (optional)",
|
| 654 |
+
placeholder="Describe the background...",
|
| 655 |
+
interactive=True,
|
| 656 |
+
scale=3
|
| 657 |
+
)
|
| 658 |
+
aspect_ratio = gr.Dropdown(
|
| 659 |
+
choices=["1:1", "16:9", "9:16", "4:3"],
|
| 660 |
+
value="1:1",
|
| 661 |
+
label="Aspect Ratio",
|
| 662 |
+
interactive=True,
|
| 663 |
+
visible=True,
|
| 664 |
+
scale=1
|
| 665 |
+
)
|
| 666 |
+
|
| 667 |
+
with gr.Row(visible=False) as object_controls:
|
| 668 |
+
with gr.Column(scale=1):
|
| 669 |
+
with gr.Row():
|
| 670 |
+
position = gr.State(value="bottom-center")
|
| 671 |
+
btn_top_left = gr.Button("โ")
|
| 672 |
+
btn_top_center = gr.Button("โ")
|
| 673 |
+
btn_top_right = gr.Button("โ")
|
| 674 |
+
with gr.Row():
|
| 675 |
+
btn_middle_left = gr.Button("โ")
|
| 676 |
+
btn_middle_center = gr.Button("โข")
|
| 677 |
+
btn_middle_right = gr.Button("โ")
|
| 678 |
+
with gr.Row():
|
| 679 |
+
btn_bottom_left = gr.Button("โ")
|
| 680 |
+
btn_bottom_center = gr.Button("โ")
|
| 681 |
+
btn_bottom_right = gr.Button("โ")
|
| 682 |
+
with gr.Column(scale=1):
|
| 683 |
+
scale_slider = gr.Slider(
|
| 684 |
+
minimum=10,
|
| 685 |
+
maximum=200,
|
| 686 |
+
value=50,
|
| 687 |
+
step=5,
|
| 688 |
+
label="Object Size (%)"
|
| 689 |
+
)
|
| 690 |
+
|
| 691 |
+
process_btn = gr.Button(
|
| 692 |
+
"Process",
|
| 693 |
+
variant="primary",
|
| 694 |
+
interactive=False
|
| 695 |
+
)
|
| 696 |
+
|
| 697 |
+
with gr.Column(scale=1):
|
| 698 |
+
with gr.Tab("Result"):
|
| 699 |
+
combined_image = gr.Image(
|
| 700 |
+
label="Combined Result",
|
| 701 |
+
show_download_button=True,
|
| 702 |
+
type="pil",
|
| 703 |
+
height=512
|
| 704 |
+
)
|
| 705 |
+
|
| 706 |
+
# ํ
์คํธ ์ฝ์
์ปจํธ๋กค์ ๋ ๋ช
ํํ๊ฒ ๊ตฌ๋ถ
|
| 707 |
+
with gr.Group():
|
| 708 |
+
gr.Markdown("### Add Text to Image")
|
| 709 |
+
with gr.Row():
|
| 710 |
+
text_input = gr.Textbox(
|
| 711 |
+
label="Text Content",
|
| 712 |
+
placeholder="Enter text to add to image..."
|
| 713 |
+
)
|
| 714 |
+
text_position_type = gr.Radio(
|
| 715 |
+
choices=["Text Over Image", "Text Behind Image"],
|
| 716 |
+
value="Text Over Image",
|
| 717 |
+
label="Text Position Type",
|
| 718 |
+
interactive=True
|
| 719 |
+
)
|
| 720 |
+
|
| 721 |
+
with gr.Row():
|
| 722 |
+
with gr.Column(scale=1):
|
| 723 |
+
# ํฐํธ ์ ํ Dropdown ์ถ๊ฐ
|
| 724 |
+
font_choice = gr.Dropdown(
|
| 725 |
+
choices=["Default", "Korean Regular", "Korean Son"],
|
| 726 |
+
value="Default",
|
| 727 |
+
label="Font Selection",
|
| 728 |
+
interactive=True
|
| 729 |
+
)
|
| 730 |
+
font_size = gr.Slider(
|
| 731 |
+
minimum=10,
|
| 732 |
+
maximum=200,
|
| 733 |
+
value=40,
|
| 734 |
+
step=5,
|
| 735 |
+
label="Font Size"
|
| 736 |
+
)
|
| 737 |
+
color_dropdown = gr.Dropdown(
|
| 738 |
+
choices=["White", "Black", "Red", "Green", "Blue", "Yellow", "Purple"],
|
| 739 |
+
value="White",
|
| 740 |
+
label="Text Color"
|
| 741 |
+
)
|
| 742 |
+
thickness = gr.Slider(
|
| 743 |
+
minimum=0,
|
| 744 |
+
maximum=10,
|
| 745 |
+
value=1,
|
| 746 |
+
step=1,
|
| 747 |
+
label="Text Thickness"
|
| 748 |
+
)
|
| 749 |
+
with gr.Column(scale=1):
|
| 750 |
+
opacity_slider = gr.Slider(
|
| 751 |
+
minimum=0,
|
| 752 |
+
maximum=255,
|
| 753 |
+
value=255,
|
| 754 |
+
step=1,
|
| 755 |
+
label="Opacity"
|
| 756 |
+
)
|
| 757 |
+
x_position = gr.Slider(
|
| 758 |
+
minimum=0,
|
| 759 |
+
maximum=100,
|
| 760 |
+
value=50,
|
| 761 |
+
step=1,
|
| 762 |
+
label="X Position (%)"
|
| 763 |
+
)
|
| 764 |
+
y_position = gr.Slider(
|
| 765 |
+
minimum=0,
|
| 766 |
+
maximum=100,
|
| 767 |
+
value=50,
|
| 768 |
+
step=1,
|
| 769 |
+
label="Y Position (%)"
|
| 770 |
+
)
|
| 771 |
+
add_text_btn = gr.Button("Apply Text", variant="primary")
|
| 772 |
+
|
| 773 |
+
with gr.Row():
|
| 774 |
+
extracted_image = gr.Image(
|
| 775 |
+
label="Extracted Object",
|
| 776 |
+
show_download_button=True,
|
| 777 |
+
type="pil",
|
| 778 |
+
height=256
|
| 779 |
+
)
|
| 780 |
+
|
| 781 |
+
# ๊ฐ ๋ฒํผ์ ๋ํ ํด๋ฆญ ์ด๋ฒคํธ ์ฒ๋ฆฌ
|
| 782 |
+
def update_position(new_position):
|
| 783 |
+
return new_position
|
| 784 |
+
|
| 785 |
+
btn_top_left.click(fn=lambda: update_position("top-left"), outputs=position)
|
| 786 |
+
btn_top_center.click(fn=lambda: update_position("top-center"), outputs=position)
|
| 787 |
+
btn_top_right.click(fn=lambda: update_position("top-right"), outputs=position)
|
| 788 |
+
btn_middle_left.click(fn=lambda: update_position("middle-left"), outputs=position)
|
| 789 |
+
btn_middle_center.click(fn=lambda: update_position("middle-center"), outputs=position)
|
| 790 |
+
btn_middle_right.click(fn=lambda: update_position("middle-right"), outputs=position)
|
| 791 |
+
btn_bottom_left.click(fn=lambda: update_position("bottom-left"), outputs=position)
|
| 792 |
+
btn_bottom_center.click(fn=lambda: update_position("bottom-center"), outputs=position)
|
| 793 |
+
btn_bottom_right.click(fn=lambda: update_position("bottom-right"), outputs=position)
|
| 794 |
+
|
| 795 |
+
# Event bindings
|
| 796 |
+
input_image.change(
|
| 797 |
+
fn=update_process_button,
|
| 798 |
+
inputs=[input_image, text_prompt],
|
| 799 |
+
outputs=process_btn,
|
| 800 |
+
queue=False
|
| 801 |
+
)
|
| 802 |
+
|
| 803 |
+
text_prompt.change(
|
| 804 |
+
fn=update_process_button,
|
| 805 |
+
inputs=[input_image, text_prompt],
|
| 806 |
+
outputs=process_btn,
|
| 807 |
+
queue=False
|
| 808 |
+
)
|
| 809 |
+
|
| 810 |
+
def update_controls(bg_prompt):
|
| 811 |
+
"""๋ฐฐ๊ฒฝ ํ๋กฌํํธ ์
๋ ฅ ์ฌ๋ถ์ ๋ฐ๋ผ ์ปจํธ๋กค ํ์ ์
๋ฐ์ดํธ"""
|
| 812 |
+
is_visible = bool(bg_prompt)
|
| 813 |
+
return [
|
| 814 |
+
gr.update(visible=is_visible), # aspect_ratio
|
| 815 |
+
gr.update(visible=is_visible), # object_controls
|
| 816 |
+
]
|
| 817 |
+
|
| 818 |
+
bg_prompt.change(
|
| 819 |
+
fn=update_controls,
|
| 820 |
+
inputs=bg_prompt,
|
| 821 |
+
outputs=[aspect_ratio, object_controls],
|
| 822 |
+
queue=False
|
| 823 |
+
)
|
| 824 |
+
|
| 825 |
+
process_btn.click(
|
| 826 |
+
fn=process_prompt,
|
| 827 |
+
inputs=[
|
| 828 |
+
input_image,
|
| 829 |
+
text_prompt,
|
| 830 |
+
bg_prompt,
|
| 831 |
+
aspect_ratio,
|
| 832 |
+
position,
|
| 833 |
+
scale_slider
|
| 834 |
+
],
|
| 835 |
+
outputs=[combined_image, extracted_image],
|
| 836 |
+
queue=True
|
| 837 |
+
)
|
| 838 |
+
|
| 839 |
+
# ํ
์คํธ ์ถ๊ฐ ๋ฒํผ ์ด๋ฒคํธ ์ฐ๊ฒฐ ์์
|
| 840 |
+
add_text_btn.click(
|
| 841 |
+
fn=add_text_to_image,
|
| 842 |
+
inputs=[
|
| 843 |
+
combined_image,
|
| 844 |
+
text_input,
|
| 845 |
+
font_size,
|
| 846 |
+
color_dropdown,
|
| 847 |
+
opacity_slider,
|
| 848 |
+
x_position,
|
| 849 |
+
y_position,
|
| 850 |
+
thickness,
|
| 851 |
+
text_position_type,
|
| 852 |
+
font_choice # ์๋ก์ด ์
๋ ฅ ์ถ๊ฐ
|
| 853 |
+
],
|
| 854 |
+
outputs=combined_image
|
| 855 |
+
)
|
| 856 |
+
|
| 857 |
+
demo.queue(max_size=5) # ํ ํฌ๊ธฐ ์ ํ
|
| 858 |
+
demo.launch(
|
| 859 |
+
server_name="0.0.0.0",
|
| 860 |
+
server_port=7860,
|
| 861 |
+
share=False,
|
| 862 |
+
max_threads=2 # ์ค๋ ๋ ์ ์ ํ
|
| 863 |
+
)
|