|
|
import gradio as gr
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
|
|
import torch
|
|
|
from threading import Thread
|
|
|
|
|
|
MODEL_ID = "uncensoredai/UncensoredLM-DeepSeek-R1-Distill-Qwen-14B"
|
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
|
MODEL_ID,
|
|
|
torch_dtype=torch.float16,
|
|
|
device_map="auto"
|
|
|
)
|
|
|
|
|
|
def generate_text(prompt, temperature=0.8, top_p=0.9, max_new_tokens=512):
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
|
|
|
generation_kwargs = dict(
|
|
|
**inputs,
|
|
|
streamer=streamer,
|
|
|
temperature=temperature,
|
|
|
top_p=top_p,
|
|
|
do_sample=True,
|
|
|
max_new_tokens=max_new_tokens
|
|
|
)
|
|
|
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
|
|
thread.start()
|
|
|
output = ""
|
|
|
for new_text in streamer:
|
|
|
output += new_text
|
|
|
yield output
|
|
|
|
|
|
with gr.Blocks(title="Uncensored DeepSeek Qwen 14B") as demo:
|
|
|
gr.Markdown("## 🧠 Uncensored DeepSeek Qwen 14B")
|
|
|
gr.Markdown("Thai & English Chatbot – Powered by Qwen 14B Distilled Model")
|
|
|
|
|
|
with gr.Row():
|
|
|
with gr.Column(scale=3):
|
|
|
prompt = gr.Textbox(label="Input", placeholder="พิมพ์ข้อความที่นี่...", lines=3)
|
|
|
temperature = gr.Slider(0.1, 1.5, value=0.8, step=0.1, label="Temperature")
|
|
|
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top P")
|
|
|
max_new_tokens = gr.Slider(64, 2048, value=512, step=64, label="Max New Tokens")
|
|
|
btn = gr.Button("Generate")
|
|
|
|
|
|
with gr.Column(scale=5):
|
|
|
output = gr.Textbox(label="AI Response", lines=20)
|
|
|
|
|
|
btn.click(generate_text, inputs=[prompt, temperature, top_p, max_new_tokens], outputs=output)
|
|
|
|
|
|
demo.queue().launch()
|
|
|
|