import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import torch from threading import Thread MODEL_ID = "uncensoredai/UncensoredLM-DeepSeek-R1-Distill-Qwen-14B" # โหลดโมเดล tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) model = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype=torch.float16, device_map="auto" ) def generate_text(prompt, temperature=0.8, top_p=0.9, max_new_tokens=512): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, skip_prompt=True) generation_kwargs = dict( **inputs, streamer=streamer, temperature=temperature, top_p=top_p, do_sample=True, max_new_tokens=max_new_tokens ) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() output = "" for new_text in streamer: output += new_text yield output with gr.Blocks(title="Uncensored DeepSeek Qwen 14B") as demo: gr.Markdown("## 🧠 Uncensored DeepSeek Qwen 14B") gr.Markdown("Thai & English Chatbot – Powered by Qwen 14B Distilled Model") with gr.Row(): with gr.Column(scale=3): prompt = gr.Textbox(label="Input", placeholder="พิมพ์ข้อความที่นี่...", lines=3) temperature = gr.Slider(0.1, 1.5, value=0.8, step=0.1, label="Temperature") top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top P") max_new_tokens = gr.Slider(64, 2048, value=512, step=64, label="Max New Tokens") btn = gr.Button("Generate") with gr.Column(scale=5): output = gr.Textbox(label="AI Response", lines=20) btn.click(generate_text, inputs=[prompt, temperature, top_p, max_new_tokens], outputs=output) demo.queue().launch()