Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,137 +1,58 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
from PIL import Image
|
| 5 |
from torchvision import transforms
|
| 6 |
-
import
|
| 7 |
-
import os
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
|
| 10 |
-
# ---------------------
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
SEQ_LEN = 32
|
| 15 |
-
VOCAB_SIZE = 75460
|
| 16 |
-
REPO_ID = "hackergeek/RADIOCAP13" # your HF repo
|
| 17 |
-
WEIGHTS_FILENAME = "pytorch_model.bin"
|
| 18 |
-
VOCAB_FILENAME = "vocab.json"
|
| 19 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
-
|
| 21 |
-
# ---------------------
|
| 22 |
-
# Download model files (if not present)
|
| 23 |
-
# ---------------------
|
| 24 |
-
# Download weights
|
| 25 |
-
weights_path = hf_hub_download(repo_id=REPO_ID, filename=WEIGHTS_FILENAME)
|
| 26 |
-
# Download vocab
|
| 27 |
-
vocab_path = hf_hub_download(repo_id=REPO_ID, filename=VOCAB_FILENAME)
|
| 28 |
-
|
| 29 |
-
# ---------------------
|
| 30 |
-
# Preprocessing & Tokenizer
|
| 31 |
-
# ---------------------
|
| 32 |
-
transform = transforms.Compose([
|
| 33 |
-
transforms.Resize((IMG_SIZE, IMG_SIZE)),
|
| 34 |
-
transforms.ToTensor(),
|
| 35 |
-
])
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
if not isinstance(img, Image.Image):
|
| 41 |
-
img = Image.fromarray(img)
|
| 42 |
-
if img.mode != "RGB":
|
| 43 |
-
img = img.convert("RGB")
|
| 44 |
-
return transform(img)
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
return cls(word2idx)
|
| 56 |
-
|
| 57 |
-
# ---------------------
|
| 58 |
-
# Decoder
|
| 59 |
-
# ---------------------
|
| 60 |
-
class BiasDecoder(torch.nn.Module):
|
| 61 |
-
def __init__(self, feature_dim=768, vocab_size=VOCAB_SIZE):
|
| 62 |
super().__init__()
|
| 63 |
-
self.token_emb
|
| 64 |
-
self.pos_emb
|
| 65 |
-
self.final_layer
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
x
|
| 69 |
-
|
| 70 |
-
x = x + self.pos_emb(pos)
|
| 71 |
-
x = x + img_feat.unsqueeze(1)
|
| 72 |
return self.final_layer(x)
|
|
|
|
| 73 |
|
| 74 |
-
# ---------------------
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
decoder = BiasDecoder().to(device)
|
| 81 |
-
decoder.load_state_dict(torch.load(weights_path, map_location=device))
|
| 82 |
-
decoder.eval()
|
| 83 |
|
| 84 |
-
|
| 85 |
-
pad_idx = tokenizer.word2idx["<PAD>"]
|
| 86 |
-
|
| 87 |
-
# ---------------------
|
| 88 |
-
# Caption generation
|
| 89 |
-
# ---------------------
|
| 90 |
@torch.no_grad()
|
| 91 |
-
def
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
for i in range(beam_size):
|
| 106 |
-
candidates.append((seq + [top_i[i].item()], score + top_p[i].item()))
|
| 107 |
-
|
| 108 |
-
beams = sorted(candidates, key=lambda x: x[1], reverse=True)[:beam_size]
|
| 109 |
-
|
| 110 |
-
if all(s[-1] == tokenizer.word2idx["<EOS>"] for s, _ in beams):
|
| 111 |
-
break
|
| 112 |
-
|
| 113 |
-
words = [tokenizer.idx2word.get(i, "<UNK>") for i in beams[0][0][1:] if i != pad_idx]
|
| 114 |
-
return " ".join(words)
|
| 115 |
-
|
| 116 |
-
# ---------------------
|
| 117 |
-
# Gradio interface
|
| 118 |
-
# ---------------------
|
| 119 |
-
with gr.Blocks() as demo:
|
| 120 |
-
gr.Markdown("# RADIOCAP13 — Image Captioning Demo")
|
| 121 |
-
gr.Markdown(f"**Device:** {'GPU 🚀' if torch.cuda.is_available() else 'CPU 🐢'}")
|
| 122 |
-
|
| 123 |
-
img_in = gr.Image(type="pil", label="Upload an Image")
|
| 124 |
-
out = gr.Textbox(label="Generated Caption")
|
| 125 |
-
btn = gr.Button("Generate Caption")
|
| 126 |
-
status = gr.Markdown("Ready.")
|
| 127 |
-
|
| 128 |
-
def wrapped(img):
|
| 129 |
-
status.update("Processing…")
|
| 130 |
-
caption = generate_caption(img)
|
| 131 |
-
status.update("Done ✔️")
|
| 132 |
-
return caption
|
| 133 |
-
|
| 134 |
-
btn.click(wrapped, inputs=img_in, outputs=out)
|
| 135 |
-
|
| 136 |
-
if __name__ == "__main__":
|
| 137 |
-
demo.launch()
|
|
|
|
| 1 |
+
!pip install -q torch torchvision transformers huggingface_hub pillow gradio
|
| 2 |
+
|
| 3 |
+
import torch, json, gradio as gr
|
| 4 |
from PIL import Image
|
| 5 |
from torchvision import transforms
|
| 6 |
+
from transformers import ViTModel
|
|
|
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
|
| 9 |
+
# --------------------- تنظیمات ---------------------
|
| 10 |
+
SEQ_LEN=32
|
| 11 |
+
REPO="hackergeek/RADIOCAP13"
|
| 12 |
+
device="cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
# دانلود وزنها و vocab
|
| 15 |
+
w=hf_hub_download(REPO,"pytorch_model.bin")
|
| 16 |
+
v=hf_hub_download(REPO,"vocab.json")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# --------------------- Tokenizer ---------------------
|
| 19 |
+
with open(v) as f: vocab=json.load(f)
|
| 20 |
+
idx2word={v:k for k,v in vocab.items()}
|
| 21 |
+
pad=vocab.get("<PAD>",0); sos=vocab.get("<SOS>",1); eos=vocab.get("<EOS>",2)
|
| 22 |
|
| 23 |
+
# --------------------- مدلها ---------------------
|
| 24 |
+
vit=ViTModel.from_pretrained("google/vit-base-patch16-224-in21k").to(device).eval()
|
| 25 |
+
class D(torch.nn.Module):
|
| 26 |
+
def __init__(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
super().__init__()
|
| 28 |
+
self.token_emb=torch.nn.Embedding(75460,768)
|
| 29 |
+
self.pos_emb=torch.nn.Embedding(SEQ_LEN-1,768)
|
| 30 |
+
self.final_layer=torch.nn.Linear(768,75460)
|
| 31 |
+
def forward(self,f,s):
|
| 32 |
+
x=self.token_emb(s)
|
| 33 |
+
x+=self.pos_emb(torch.arange(x.size(1),device=x.device).clamp(max=self.pos_emb.num_embeddings-1))
|
| 34 |
+
x+=f.unsqueeze(1)
|
|
|
|
|
|
|
| 35 |
return self.final_layer(x)
|
| 36 |
+
decoder=D().to(device); decoder.load_state_dict(torch.load(w,map_location=device)); decoder.eval()
|
| 37 |
|
| 38 |
+
# --------------------- پیشپردازش تصویر ---------------------
|
| 39 |
+
def preprocess(img):
|
| 40 |
+
if img.mode!="RGB": img=img.convert("RGB")
|
| 41 |
+
t=transforms.Compose([transforms.Resize((224,224)),transforms.ToTensor()])
|
| 42 |
+
return t(img).unsqueeze(0).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
# --------------------- تولید کپشن ---------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
@torch.no_grad()
|
| 46 |
+
def caption(img):
|
| 47 |
+
f=vit(pixel_values=preprocess(img)).pooler_output
|
| 48 |
+
seq=[sos]
|
| 49 |
+
for _ in range(SEQ_LEN-1):
|
| 50 |
+
inp=torch.tensor(seq+[pad]*(SEQ_LEN-len(seq)),device=device).unsqueeze(0)
|
| 51 |
+
logits=decoder(f,inp)
|
| 52 |
+
nxt=torch.argmax(logits[0,len(seq)-1]).item()
|
| 53 |
+
seq.append(nxt)
|
| 54 |
+
if nxt==eos: break
|
| 55 |
+
return " ".join(idx2word.get(i,"<UNK>") for i in seq[1:] if i not in [pad,sos,eos])
|
| 56 |
+
|
| 57 |
+
# --------------------- رابط Gradio ---------------------
|
| 58 |
+
gr.Interface(fn=caption, inputs=gr.Image(type="pil"), outputs="text", title="RADIOCAP13 Captioning").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|