Spaces:
Sleeping
Sleeping
File size: 6,921 Bytes
e207dc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
#!/usr/bin/env python3
"""
Script untuk membuat sample dataset JSONL untuk training
"""
import json
import os
from pathlib import Path
def create_sample_dataset():
"""Create sample JSONL dataset"""
# Sample training data
sample_data = [
{
"text": "Apa itu machine learning? Machine learning adalah cabang dari artificial intelligence yang memungkinkan komputer belajar dari data tanpa diprogram secara eksplisit.",
"category": "education",
"language": "id"
},
{
"text": "Jelaskan tentang deep learning. Deep learning adalah subset dari machine learning yang menggunakan neural network dengan banyak layer untuk memproses data kompleks.",
"category": "education",
"language": "id"
},
{
"text": "Bagaimana cara kerja neural network? Neural network bekerja dengan menerima input, memproses melalui hidden layers, dan menghasilkan output berdasarkan weights yang telah dilatih.",
"category": "education",
"language": "id"
},
{
"text": "Apa keuntungan menggunakan Python untuk AI? Python memiliki library yang lengkap seperti TensorFlow, PyTorch, dan scikit-learn yang memudahkan development AI.",
"category": "programming",
"language": "id"
},
{
"text": "Jelaskan tentang transfer learning. Transfer learning adalah teknik menggunakan model yang sudah dilatih pada dataset besar dan mengadaptasinya untuk task yang lebih spesifik.",
"category": "education",
"language": "id"
},
{
"text": "Bagaimana cara optimize model machine learning? Optimasi dapat dilakukan dengan hyperparameter tuning, feature engineering, dan menggunakan teknik seperti cross-validation.",
"category": "optimization",
"language": "id"
},
{
"text": "Apa itu overfitting? Overfitting terjadi ketika model belajar terlalu detail dari training data sehingga performa pada data baru menurun.",
"category": "education",
"language": "id"
},
{
"text": "Jelaskan tentang regularization. Regularization adalah teknik untuk mencegah overfitting dengan menambahkan penalty pada model complexity.",
"category": "education",
"language": "id"
},
{
"text": "Bagaimana cara handle imbalanced dataset? Dataset tidak seimbang dapat diatasi dengan teknik sampling, class weights, atau menggunakan metrics yang tepat seperti F1-score.",
"category": "data_handling",
"language": "id"
},
{
"text": "Apa itu ensemble learning? Ensemble learning menggabungkan multiple model untuk meningkatkan performa prediksi dan mengurangi variance.",
"category": "education",
"language": "id"
}
]
# Create data directory
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
# Write to JSONL file
output_file = data_dir / "training_data.jsonl"
with open(output_file, 'w', encoding='utf-8') as f:
for item in sample_data:
json.dump(item, f, ensure_ascii=False)
f.write('\n')
print(f"β
Sample dataset created: {output_file}")
print(f"π Total samples: {len(sample_data)}")
print(f"π File size: {output_file.stat().st_size / 1024:.2f} KB")
# Show sample content
print("\nπ Sample content:")
print("-" * 50)
for i, item in enumerate(sample_data[:3], 1):
print(f"Sample {i}:")
print(f" Text: {item['text'][:100]}...")
print(f" Category: {item['category']}")
print(f" Language: {item['language']}")
print()
def create_custom_dataset():
"""Create custom dataset from user input"""
print("π§ Create Custom Dataset")
print("=" * 40)
# Get dataset info
dataset_name = input("Dataset name (without extension): ").strip()
if not dataset_name:
dataset_name = "custom_dataset"
num_samples = input("Number of samples (default 10): ").strip()
try:
num_samples = int(num_samples) if num_samples else 10
except ValueError:
num_samples = 10
print(f"\nπ Creating {num_samples} samples...")
print("Format: Enter text for each sample (empty line to finish early)")
custom_data = []
for i in range(num_samples):
print(f"\nSample {i+1}/{num_samples}:")
text = input("Text: ").strip()
if not text:
print("Empty text, finishing...")
break
category = input("Category (optional): ").strip() or "general"
language = input("Language (optional, default 'id'): ").strip() or "id"
sample = {
"text": text,
"category": category,
"language": language
}
custom_data.append(sample)
# Ask if user wants to continue
if i < num_samples - 1:
continue_input = input("Continue? (y/n, default y): ").strip().lower()
if continue_input in ['n', 'no']:
break
if not custom_data:
print("β No data entered, dataset not created")
return
# Create data directory
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
# Write to JSONL file
output_file = data_dir / f"{dataset_name}.jsonl"
with open(output_file, 'w', encoding='utf-8') as f:
for item in custom_data:
json.dump(item, f, ensure_ascii=False)
f.write('\n')
print(f"\nβ
Custom dataset created: {output_file}")
print(f"π Total samples: {len(custom_data)}")
def main():
print("π Dataset Creator for LLM Training")
print("=" * 50)
print("Pilih opsi:")
print("1. Create sample dataset (10 samples)")
print("2. Create custom dataset")
print("3. View existing datasets")
choice = input("\nPilihan (1-3): ").strip()
if choice == "1":
create_sample_dataset()
elif choice == "2":
create_custom_dataset()
elif choice == "3":
data_dir = Path("data")
if data_dir.exists():
jsonl_files = list(data_dir.glob("*.jsonl"))
if jsonl_files:
print(f"\nπ Found {len(jsonl_files)} JSONL files:")
for file in jsonl_files:
size = file.stat().st_size / 1024
print(f" - {file.name} ({size:.2f} KB)")
else:
print("\nπ No JSONL files found in data/ directory")
else:
print("\nπ Data directory does not exist")
else:
print("β Pilihan tidak valid")
if __name__ == "__main__":
main()
|